Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Jak można zniszczyć ekosystem jeziora miejskiego : zanieczyszczenie osadów dennych dwóch płytkich zbiorników wodnych
Języki publikacji
Abstrakty
The research covered two lakes: Karczemne and Domowe Małe, which served as receivers for rainwater and municipal or industrial sewage. The sediment cores were obtained using a Kajak tube sampler. Analyses of HM, PAH and PCB were done by the AAS, ICP-AES and GC MS methods. OM, SiO2, TH, Ca, Mg, CO2, Fe, Al, Mn, TN and TP were measured. The research showed that the sediments of Lake Karczemne, into which the untreated municipal sewage was discharged, are characterized by a high content of P. It was found that the sediments accumulate toxins, OM and pollutants characteristic for various industries. Karczemne Lake which collected municipal and industrial wastewater, contained a high content of Pb, Cu and PAH in the sediments, and Domowe Małe Lake, receiving stormwater, contained high concentrations of PAH. Research has shown that one of the most important tools for selecting an appropriate method of lake restoration is the analysis of the spatial distribution of pollutants in the bottom sediments. Thanks to such an analysis of the composition of the bottom sediments and the correlation between the components of the sediments and their sorption properties, the restoration of the Karczemne Lake using the Ripl method was planned and the possibility of restoration of the Domowe Małe Lake in this way was eliminated.
Celem badań była analiza zawartości i rozmieszczenie zanieczyszczeń mineralnych, organicznych i toksycznych w osadach dennych dwóch zdegradowanych jezior miejskich. Badaniami objęto dwa płytkie jeziora: Karczemne i Domowe Małe (Polska). Rdzenie osadów pobrano za pomocą czerpacza rurkowego typu Kajak i podzielono na warstwy o grubości 30 cm. Analizy metali ciężkich, WWA i PCB : wykonano metodami AAS, ICP-AES i GC MS. W próbkach osadów zmierzono zawartość: MO, SiO2, TO, Ca, Mg, CO2, Fe, Al, Mn, TN i TP. Badania wykazały, że osady Jeziora Karczemnego, do którego odprowadzane były nieoczyszczone ścieki komunalne, charakteryzuje bardzo wysoka zawartość P. Ponadto stwierdzono, że w osadach dennych osadzają się toksyny, MO i zanieczyszczenia charakterystyczne dla różnych gałęzi przemysłu. Jezioro Karczemne, które odbierało ścieki z komunalne i przemysłowe, zawierało w osadach dużą zawartość Pb, Cu i WWA, a Domowe Małe, przyjmujące głównie wody opadowe zawierało wysokie stężenia WWA. Badania wykazały, że jednym z najważniejszych narzędzi umożliwiających dobór odpowiedniej metody rekultywacji jezior jest analiza przestrzennego rozkładu zanieczyszczeń w osadach dennych. Dzięki takiej analizie składu osadów i korelacji między komponentami osadów oraz ich właściwości sorpcyjnych zaplanowano rekultywację Jeziora Karczemnego metodą Ripla i wyeliminowano możliwość rekultywacji tym sposobem Jeziora Domowego Małego.
Czasopismo
Rocznik
Tom
Strony
40--54
Opis fizyczny
Bibliogr. 65 poz., mapka, rys., tab., wykr.
Twórcy
- University Warmia and Mazury in Olsztyn, Poland
autor
- University Warmia and Mazury in Olsztyn, Poland
autor
- University Warmia and Mazury in Olsztyn, Poland
autor
- University Warmia and Mazury in Olsztyn, Poland
autor
- University Warmia and Mazury in Olsztyn, Poland
autor
- University Warmia and Mazury in Olsztyn, Poland
Bibliografia
- 1. Algül, F. & Beyhan, M. (2020). Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10, 11728. DOI: 10.1038/s41598-020-68833-2
- 2. Alves, C., Gonçalves, C., Evtyugina, M., Pio, C., Mirante, F. & Puxbaum, H. (2010). Particulate organic compounds emitted form experimental wildland fires in a Mediterranean ecosystem. Atmospheric Environment, 44, 23, pp. 2750-2759. DOI: 10.1016/j.atmosenv.2010.04.029
- 3. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method15 years after the termination of the lake restoration procedures. Water, 11, 10, 1-20. DOI: 10.3390/w11102175
- 4. Augustyniak, R., Neugebauer, M., Kowalska, J., Szymański, D., Wiśniewski, G., Filipkowska, Z., Grochowska, J., Łopata, M., Parszuto, K. & Tandyrak, R. (2015). Bottom deposits of stratified, seepage, urban lake (on the example of Tyrsko Lake, Poland) as a factor potentially shaping lake water quality. Journal of Ecological Engineering, 18, 5, pp. 55-62.
- 5. Barbusiński, K. & Nocoń, W. (2011). Heavy metal compound content in Kłodnica bottom sediments. Environmental Protection, 33, 1, pp. 13-17. (in Polish)
- 6. Bartoli, G., Papa, S., Sagnella, E. & Fioretto, A. (2012). Heavy metal content in sediments along the Calore river: Relationships with physical-chemical characteristics. Journal of Environmental Management, 95, pp. 9-14. DOI: 10.1016/j.jenvman.2011.02.013
- 7. Bing, H.J., Wu, Y.H., Sunz, B. & Yao, S.C. (2011). Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. Journal of Environmental Sciences, 23, 10, pp. 1671-1678. DOI: 10.1016/s1001-0742(10)60593-1
- 8. Birch, G. & Taylor, S. (1999). Source of heavy metals in sediments of the Port Jackson estuary, Australia. Science of The Total Environment, 227, (2-3), pp. 123-138.
- 9. Bocca, B., Alimonti, A., Petrucci, F., Violante, N., Sancesario, G. & Forte, G. (2004). Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochimica Acta, 59, 4, pp. 559-566. DOI: 10.1016/j.sab.2004.02.007
- 10. Bojakowska, I. & Sokołowska, G. (1996). Heavy metals in lake sediments of the Kashubian Lake District. Geological Review, 44, 9, pp. 920 - 923. (in Polish)
- 11. Bojakowska, I., Sztuczyńska, A. & Grabiec-Raczak, E. (2012). Monitoring studies of lake sediments in Poland: polycyclic aromatic hydrocarbons. Bulletin of the Polish Geological Institute, 450, pp. 17-26. (in Polish)
- 12. Brzozowska, R. & Gawrońska, H. (2009). The influence of a long-term artificial aeration on the nitrogen compounds exchange between bottom sediments and water in Lake Długie. Oceanological and Hydrobiological Studies, 38, 1, pp. 113-119.
- 13. Cappacioni, B., Martini, M. & Mangani, F. (1995). Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bulletin of Volconalogy, 56, 8, pp. 593-600.
- 14. Chen, M., Ding, S., Zhang, L., Li, Y., Sun, Q. & Zhang, Ch. (2017). An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution. Science of The Total Environment, 575, pp. 330-337. DOI: 10.1016/j.scitotenv.2016.10.063
- 15. Dhanakumar, S., Solaraj, G. & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, pp. 145-151. DOI: 10.1016/j.ecoenv.2014.11.032
- 16. EPA (2001). Parameters of Water Quality. Interpretation and Standards. Environmental Protection Agency, Wexford.
- 17. Fu, J., Zhao, Ch., Luo, Y., Liu, Ch., Kyzas, G.Z., Luo, Y., Zhao, D., An, S. & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, pp. 102-109. DOI: 10.1016/j.jhazmat.2014.01.044
- 18. Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R. & Acosta, J.A. (2017). Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. Journal of Geochemical Exploration, 172, pp. 174-183. DOI: 10.1016/j.gexplo.2016.10.015
- 19. Grochowska, J., Augustyniak, R., Łopata, M. & Tandyrak, R. (2020). Is it possible to restore a heavily polluted, shallow, urban lake? Applied Science, 10, 11, pp. 3698. DOI: 10.3390/app10113698
- 20. Grochowska, J., Augustyniak, R., Łopata, M., Parszuto, K., Tandyrak, R. & Płachta, A. (2019). From saprotrophic to clear water status: the restoration path of a degraded urban lake. Water, Air & Soil Pollution, 230, pp. 1-14. DOI: 10.1007/s11270-019-4138-5
- 21. Grochowska, J., Tandyrak, R. & Wiśniewski, G. (2014). Long-term hydrochemical changes in a lake after the application of several protection measures in the catchment. Polish Journal of Natural Sciences, 29, 3, pp. 251-263.
- 22. Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, pp. 975-1001.
- 23. Håkanson, L. (2004). Internal loading: A new solution to an old problem in aquatic sciences. Lake and Reservoir and Management, 9, 1, pp. 3-23. DOI: 10.1111/j.1440-1770.2004.00230.x
- 24. Hermanowicz, W., Dożańska, W., Dojlido, J., Koziorowski, B. & Zerbe, J. (1999). Physico - chemical study of water and wastewater. Ed. Arkady, Warsaw, Poland, 1999. (in Polish)
- 25. Jansson, M. (1987). Anaerobic dissolution of iron-phosphorus complex in sediment due to the activity of nitrate-reducing bacteria. Microbial Ecology, 14, pp. 81-89.
- 26. Jeremiason, J.D., Eisenreich, S.J. & Peterson, M.J. (2011). Accumulation and recycling of PCBs and PAHs in artificially eutrophied lake 227. Canadian Journal of Fisheries and Aquatic Sciences, 56, 4, pp. 650-660. DOI: 10.1139/cjfas-56-4-650
- 27. Jeremiason, J.D., Eisenreich, S.J., Peterson, M.J., Beaty, K.G., Hecky, R. & Elser, J.J. (1999). Biogeochemical cycling of PCBs in lakes of variable trophic status: A paired-lake experiment. Limnology and Oceanography, 44, 3, 2, pp. 889-902. DOI: 10.4319/lo.1999.44.3
- 28. Joniak, T., Jakubowska, N. & Szeląg-Wasilewska, E. (2013). Degradation of the recreational functions of urban lake: A preliminary evaluation of water turbidity and light availability (Strzeszyńskie Lake, Western Poland). Polish Journal of Natural Sciences, 28, pp. 43-51.
- 29. Juśkiewicz, W., Marszelewski, W. & Tylmann, W. (2015). Differentiation of the concentration of heavy metals and persistent organic pollutants in lake sediments depending on the catchment management (Lake Gopło case study). Bulletin of Geography. Physical Geography Series, 8, 71-80. DOI: 10.1515/bgeo-2015-0006
- 30. Kaca, E. (2003). Measurements of water flow volume and mass of substance contained in it, and its uncertainty on the example of fish ponds. Water-Environment-Rural Areas, 13, 41, pp. 31-57. (in Polish)
- 31. Kang, X., Song, J., Yuan, H., Duan, L., Li, X., Li, N., Liang, X. & Qu, B. (2017). Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicology and Environmental Safety, 143, pp. 296-306. DOI: 10.1016/j.ecoenv.2017.05.036
- 32. Katsoyiannis, A., Terzi, E. & Cai, Q.Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69, pp. 1337-1339. DOI: 10.1016/j.chemosphere.2007.05.084
- 33. Kishe, M.A. & Machiwa, J.F. (2003). Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environment International, 28, 7, pp. 619-625. DOI: 10.1016/S0160-4120(02)00099-5
- 34. Kondracki, J.A. (2011). Regional Geography of Poland. Ed. PWN, Warsaw, Poland. (in Polish)
- 35. Kowalczewska-Madura, K., Dondajewska, R., Gołdyn, R., Kozak, A. & Messyasz, B. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water, Air & Soil Pollution, 229, 8, pp. 280. DOI: 10.1007/s11270-018-3937-4
- 36. Kowalczewska-Madura, K., Gołdyn, R. & Dondajewska, R. (2011). Phosphorus release from the bottom sediments of Lake Rusałka (Poznań, Poland). Oceanological and Hydrobiological Studies, 38, 4, pp. 135-144. DOI: 10.2478/VI00009-010-0046-0
- 37. LAWA - Länder-Arbeitsgemeinschaft Wasser. Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland - chemische Gewässergüteklassifi kation. Zielvorgaben zum Schutz oberirdischer Binnengewässer, Berlin, Germany, Band 2, 10, pp. 1-26.
- 38. Lidell, M., Bremle, G., Broberg, O. & Larsson, P. (2001). Monitoring of persistent organic pollutants (POPs): examples from Lake Väner, Sweden. Ambio 30, 8, pp. 545-551. DOI: 10.1579/0044-7447-30.8.545
- 39. Liu, B., Xu, H., Lan, J., Sheng, E., Che, S. & Zhou, X. (2014). Biogenic silica contents of Lake Quinghai sediments and its environmental significance. Frontiers of Earth Science, 8, 4, pp. 573-581. DOI: 10.1007/s11707-014-0440-0
- 40. Liu, D., Yuan, P., Tian, Q., Liu, H., Deng, L., Song, Y., Zhou, J., Losic, D., Zhou, J., Song, H., Guo, H. & Fan, W. (2019). Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium. Nature Communications, 10, pp. 4829. DOI: 10.1038/s41467-019-12828-9
- 41. Łopata, M. (2010). Water-legal survey for the introduction of substances inhibiting the growth of algae to the waters of Domowe Duże and Domowe Małe lakes in Szczytno in connection with the planned reclamation of the lakes using the phosphorus inactivation method. Typescript. (in Polish)
- 42. Mamindy-Pajany, Y., Hamer, B., Romeo, M., Geret, F., Galgani, F., Durmisi, E., Hurel, Ch. & Marmier, N. (2011). The toxicityof composed sediments from Mediterranean ports evaluated by several bioassays. Chemosphere, 82, 3, pp. 362-369. DPO:10.1016/j.chemosphere.2010.10.005
- 43. Migaszewski, Z.M. & Gałuszka, A. (2003). Outline of environmental geochemistry. Publishing of the Świętokrzyska Academy, Kielce, Poland. (in Polish)
- 44. Nasr, S.M., Okbah, M.A. & Kasem, S.M. (2006). Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. International Journal of Oceans and Oceanography, 1, 1, pp. 99-109.
- 45. Ordinance of the Ministry of the Environment of 1 September 2016 on the method of conducting an assessment of the soil surface pollution. Journal of Laws of 2016, item 1395. (in Polish)
- 46. Ordinance of the Ministry of the Environment of 11 May 2015 on the recovery of waste outside installations and equipment. Journal of Laws of 2015, item 796. (in Polish)
- 47. Piaścik, H. (1996). Geological and geomorphological conditions of the Masurian Lake District and the Sępopolska Plain. Problem Journals of the Progress of Agricultural Sciences, 431, pp. 31-45. (in Polish)
- 48. Piasecki, D. (1960). Geological and morphological sketch of the Radunia river basin. Annals of the Polish Geological Society, XXIX, 4, pp. 385-394. (in Polish)
- 49. Planter, M., Jędrychowska, G. & Łaźniewski, J. (2005). Assessment of the purity of the Bartąg, Domowe Duże, Domowe Małe and Ukiel lakes according to the research from 2004. VIEP Olsztyn, 30, 2, pp. 1-5. (in Polish)
- 50. Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M. & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of reservoir Blachownia, South Poland). Archives of Environment Protection, 44, 1, pp. 10-23. DOI: 10.24425/118177
- 51. Prosowicz, D. (2008). Metals in bottom sediments of Wigry Lake. Geologia, 34, pp. 85-108. (in Polish)
- 52. Ripl, W. (1976a). Biochemical oxidation of polluted lake sediment with nitrate. A new restoration method. Ambio, 5, pp. 132-135.
- 53. Ripl, W. (l976b). Prozeßsteuerung in geschädigten See-Ökosystemen. Vierteljahresschrift der Naturforschenden Gesell-schaft Zürich, 121, pp. 301-308.
- 54. Roden, E.& Emonds, J. (1997). Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archive fur Hydrobiologie, 139, 3, pp. 347-378. DOI: 10.1127/archiv-hydrobiol/139/1997/347
- 55. Sanders, G., Hamilton-Taylor, J. & Jones, K.C. (1996). PCB and PAH dynamics in a small rural lake. Environmental Science and Technology, 30, 10, pp. 2958-2966. DOI: 10.10.21/es9509240
- 56. Sojka, M., Jaskuła, J. & Siepak, M. (2018). Heavy metals in bottom sediments of reservoirs in the lowland area of Western Poland: concentrations, distribution, sources and ecological risk. Water, 11, pp. 56. DOI: 10.3390/w11010056
- 57. Stogiannidis, E. & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre, D.M. (ed.) Reviews of environmental contamination and toxicology. Springer International Publishing, Switzerland, 234, pp. 49-133.
- 58. Tibco Software Inc. STATISTICA version 13.0 2018.
- 59. Waisberg, M., Joseph, P., Hale, B. & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, (2-3), pp. 95-117. DOI: 10.1016/s0300-483x(03)00305-6
- 60. Wakida, F.T., Lara-Ruiz, D., Temores-Pen, J., Rodriguez-Ventura, J.G., Diaz, C. & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River, Mexico. Environmental Geology, 54, 3, pp. 637-642. DOI: 10.1007/s00254-007-0831-6
- 61. Wang, X., Zhang, L., Zhao, Z. & Cai, Y. (2018). Heavy metal pollution in reservoir in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Science of the Total Environment, 634, pp. 158-169. DOI: 10.1016/j.scitotenv.2018.03.340
- 62. Wilson, D.C. (2018). Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. Science of the Total Environment, 621, pp. 95-107. DOI: 10.1016/j.scitotenv.2017.11.223
- 63. Wróbel, P. (2012). Elaboration of bathymetry and morphometric chart of the Lake Domowe Małe. Typescript. (in Polish)
- 64. Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. & Sylvestre, S. (2002). PAH in the Fraser River basin: a critical appraisal of PAH ratios as indicator of PAH source and composition. Organic Geochemistry, 33, pp. 489-515. DOI: 10.1016/s0146-6380(02)00002
- 65. Zamparas, M. & Zacharias, I. (2014). Restoration of eutrophic freshwater by managing internal nutrient loads. Science of the Total Environment, 496, pp. 551-562. DOI: 10.1016/j.scitotenv.2014.07.076
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71fe66c6-fb55-4e4d-b4e7-d9a932e01030