PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic and resonance response analysis for a turbine blade with varying rotating speed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A coupling model between turbine blades with a varying rotating speed and oncoming vortices is constructed, where the coupling of the structure and the fluid is simulated by the van der Pol oscillation. Partial differential governing equations of motions for the coupled system are obtained and discretized by using the Galerkin method. The 1:2 subharmonic resonance and the 1:1 internal resonance are investigated with the multiple scale method and first-order averaged equations are then derived. Nonlinear responses and bifurcation characteristics are studied by a numerical integration method. Stability of bifurcation curves is determined by utilizing the Routh-Hurwitz criterion. The effect of system parameters including the detuning parameter, steady-state rotating speed, amplitude of periodic perturbation for the rotating speed and freestream velocity on vibration responses are investigated.
Rocznik
Strony
31--42
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • School of Mathematical Sciences, University of Jinan, Jinan 250022, China
autor
  • School of Mathematical Sciences, University of Jinan, Jinan 250022, China
autor
  • School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
autor
  • School of Mathematical Sciences, University of Jinan, Jinan 250022, China
Bibliografia
  • 1. Barron M.A., Sen M., 2009, Synchronization of coupled self-excited elastic beams, Journal of Sound and Vibration, 324, 209-220
  • 2. Barron M.A., 2010, Vibration analysis of a self-excited elastic beam, Journal of Applied Research and Technology, 8, 2, 227-239
  • 3. Clough R.W., Penzien J., 2003, Dynamics of structures, Computers and Structures, Inc., 3rd edition
  • 4. Domagalski Ł., Jędrysiak J., 2016, Nonlinear vibrations of periodic beams, Journal of Theoretical and Applied Mechanics, 54, 4, 1095-1108
  • 5. Facchinetti M.L., De Langree E., Biolley F., 2004, Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and Structures, 19, 123-140
  • 6. Gabbai R., Benaroya H., 2005, An overview of modeling and experiments of vortex-induced vibration of circular cylinders, Journal of Sound and Vibration, 282, 575-616
  • 7. Georgiades F., Latalski J., Warmiński J., 2014, Equations of motion of rotating composite beam with a nonconstant rotation speed and an arbitrary preset angle, Meccanica, 49, 1833-1858
  • 8. Gostelow J.P., Platzer M.F., Carscallen W.E., 2006, On vortex formation in the wake flows of transonic turbine blades and oscillating airfoils, Journal of Turbomachinery-ASME, 128, 528-535
  • 9. Hartlen R., Currie I., 1970, Lift-oscillator model of vortex induced vibration, Journal of Engineering Mechanics-ASCE, 96, 577-591
  • 10. Hao Z.F., Cao Q.J., 2015, The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness, Journal of Sound and Vibration, 340, 61-79
  • 11. Hao Z.F., Cao Q.J., Wiercigroch M., 2016, Two-sided damping constraint control for high-performance vibration isolation and end-stop impact protection, Nonlinear Dynamics, 86, 2129-2144
  • 12. Hemon P., 1999, An improvement of the time delayed quasi-steady model for the oscillations of circular cylinders in cross-flow, Journal of Fluids and Structures, 13, 291-307
  • 13. Kammer D.C., Schlack A.L., 1987, Effects of nonconstant spin rate on the vibration of a rotating beam, Journal of Applied Mechanics, 54, 2, 305-310
  • 14. Keber M., Wiercigroch M., 2008, A reduced order model for vortex-induced vibration of a vertical offshore riser in lock-in, IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering, Iutam Bookseries, 8, 155-166
  • 15. Kim H., Chung J., 2016, Nonlinear modeling for dynamic analysis of a rotating cantilever beam, Nonlinear Dynamics, 86, 1981-2002
  • 16. Lee Y., Vakakis A., Bergman L., McFarland M., 2006, Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive nonlinear energy sinks, Structural Control and Health Monitoring, 13, 41-75
  • 17. Nayfeh A.H., Mook D.T., 1979, Nonlinear Oscillations, New York, 331-338
  • 18. Shahlaei-Far S., Nabarrete A., Balthazar J.M., 2016, Homotopy analysis of a forced nonlinear beam model with quadratic and cubic nonlinearities, Journal of Theoretical and Applied Mechanics, 54, 4, 1219-1230
  • 19. Staino A., Basu B., 2013, Dynamics and control of vibrations in wind turbines with variable rotor speed, Engineering Structures, 56, 58-67
  • 20. Wang D., Chen Y.S., Wiercigroch M., Cao Q.J., 2016a, A three-degree-of-freedom model for vortex-induced vibrations of turbine blades, Meccanica, 51, 2607-2628
  • 21. Wang D., Chen Y.S., Hao Z.F., Cao Q.J., 2016b, Bifurcation analysis for vibrations of a turbine blade excited by air flows, Science China Technological Sciences, 59, 8, 1217-1231
  • 22. Wang D., Chen Y.S., Wiercigroch M., Cao Q.J., 2016c, Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices, Applied Mathematics and Mechanics, 37, 9, 1251-1274
  • 23. Warmiński J., Latalski J., 2016, Saturation control for a rotating thin-walled composite beam structure, Procedia Engineering, 144, 713-720
  • 24. Wei K., Meng G., Zhou S., Liu J., 2006, Vibration control of variable speed/acceleration rotating beams using smart materials, Journal of Sound and Vibration, 298, 4/5, 1150-1158
  • 25. Yang J.B., Jiang L.J., Chen D.C., 2004, Dynamic modelling and control of a rotating Euler-Bernoulli beam, Journal of Sound and Vibration, 274, 863-875
  • 26. Yao M.H., Chen Y.P., Zhang W., 2012, Nonlinear vibrations of blade with varying rotating speed, Nonlinear Dynamics, 68, 487-504
  • 27. Yao M.H., Zhang W., Chen Y.P., 2014, Analysis on nonlinear oscillations and resonant responses of a compressor blade, Acta Mechanica, 225, 3483-3510
  • 28. Younesian D., Esmailzadeh E., 2010, Non-linear vibration of variable speed rotating viscoelastic beams, Nonlinear Dynamics, 60, 193-205
  • 29. Zhu K., Chung J., 2016, Dynamic modeling and analysis of a spinning Rayleigh beam under deployment, International Journal of Mechanical Sciences, 115-116, 392-405
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71fb6780-7064-4381-845f-f3eccf9715a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.