Identyfikatory
Warianty tytułu
Wpływ poziomu odkształceń na przebieg długotrwających relaksacji przędz poliestrowych
Języki publikacji
Abstrakty
The main problem in the investigation and prediction of stress relaxation is the long time periods (not in seconds or minutes but in days or even months) of measurements for each kind of textile, especially in cases where users need to know the behaviour of the textile in prolonged time usage. Previously it was found that the rate of relaxation on the log scale can be described by two straight lines and the values of relaxation can be predicted over a long time by the rate of relaxation of the second linear dependency. The present paper shows investigations of 29.4 tex polyester yarn's relaxation behaviour at different levels of elongation, i.e. at 3, 5, 7 and 10%. Investigations show that the place of the break-point of relaxation depends on the level of elongation - by increasing the level of elongation the time decreases till the break-point. This phenomenon is clearly visible at higher levels of elongation, while at low levels (3 and 5%) the difference is quite small. Using the data presented, it is possible to predict long-lasting relaxation without long-lasting experiments; only shorter than 1000 second tests are needed.
Istotnym problemem jest przewidywanie relaksacji naprężeń włókien poliestrowych przebiegających w dużych odcinkach czasowych (dni a nawet miesięcy). Dotychczas uważano, że szybkość relaksacji w skali logarytmicznej może być przedstawiona przez dwie linie proste a wartości relaksacji mogą być przewidywane w długich odcinkach czasowych przez szybkość relaksacji drugiej zależności liniowej. Przedstawione w pracy badania włókien poliestrowych PET o masie liniowej 29,4 tex przeprowadzone dla odkształceń 3, 5, 7 i 10% wykazują, że relaksacja przebiega w zależności od zastosowanego wydłużenia. Stwierdzono, że punkt zmiany charakteru relaksacji zależy od wydłużenia. Zjawisko to jest wyraźnie widoczne przy większych wydłużeniach podczas gdy dla wydłużeń 3% i 5% jest zdecydowanie małe. Dzięki przedstawionym wynikom badań możliwe jest przewidywanie relaksacji przy stosowaniu testów krótszych niż 1000 sek.
Czasopismo
Rocznik
Strony
73--77
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
Bibliografia
- 1. Wortmann FJ, Schulz KV. Non-linear viscoelastic performance of Nomex, Kevlar and polypropylene fibres in a single step stress relaxation test: 2. Moduli, viscosities and isochronal stress/strain curves. Polymer 1995; 36, 12: 2363 – 2369.
- 2. Zidek J, Jancar J, Milchev A, Vilgis T. Mechanical Response of Hybrid Cross-Linked Networks to Uniaxial Deformation: A Molecular Dynamics Model. Macromolecules 2014; 47, 24: 8795−8807.
- 3. Pocienė R, Vitkauskas A. Inverse Stress Relaxation in Textile Yarns After the Blockage of Viscoelastic Recovery. Materials science (Medžiagotyra) 2007; 13, 3: 240 – 244.
- 4. Kothari VK, Rajkhowa R, Cupta VB. Stress Relaxation and Inverse Relaxation in Silk Fibers. Journal of Applied Polymer Science 2001; 82: 1147-1154.
- 5. Vitkauskas A. Viscoelastic Properties of Textile Yarns. Research Problems. Fibres & Textiles in Easter Europe 1998; 6, 1: 36-38.
- 6. Bickerton S, Buntain MJ, Somashekar AA. The Viscoelastic Compression Behavior of Liquid Composite Molding Preforms. Composites 2003; A 34: 431-444.
- 7. Van Langenhove L, Kiekens P. Resilience Properties of Polypropylene Carpets. Journal of the Textile Institute 1997; 67, 9: 671-676.
- 8. Bednarski G, Kowalski K. Assessment of Rheological Properties of Distance Weft-Knitted Fabrics, Based on Dynamic Compression and Relaxation of Forces. Fibres & Textiles in Easter Europe 2002; 10, 2: 42-45.
- 9. Miltenburg JGM. Stress Relaxation and Tensile Modulus of Polymeric Fibers. Textile Research Journal 1991; 61, 6: 363-369.
- 10. Meredith R. Relaxation of Stress in Stretched Cellulose Fibres. The Journal of the Textile institute 1954; 45, 6: T438 - T461.
- 11. Guthrie JC, Wibberley J. The Effect of Time on the Recovery of Fibres. The Journal of the Textile institute 1965; 56, 3: 97-103.
- 12. Manich AM, Ussman MH, Barella A. Viscoelastic Behavior of Polypropylene. Textile Research Journal 1999; 69, 5: 325-330.
- 13. Inoue M, Niwa M. Tensile and Tensile Stress Relaxation Properties of Wool/ Cotton Plied Yarns. Textile Research Journal 1997; 67, 5: 379-385.
- 14. Pocienė R, Vitkauskas A. Inverse Stress Relaxation and Viscoelastic Recovery of Multifilament Textile Yarns in Different Test Cycles. Materials science (Medžiagotyra) 2005; 11, 1: 68-72.
- 15. Geršak J, Šajn D, Bukošek V. A study of the relaxation phenomena in the fabrics containing elastane yarns. International Journal of Clothing Science and Technology 2005; 17, 3/4: 188-199.
- 16. Urbelis V, Petrauskas A. Influence of Hygrothermal Treatment on the Stress Relaxation of Clothing Fabrics’ Systems. Materials science (Medžiagotyra) 2008; 14, 1: 69-74.
- 17. Hazavehi E, Azadiyan M, Zolghanein P. Investigation and Modelling of Stress Relaxation on Cylindrical Shell Woven Fabrics: Effect of Experimental Speed. Fibres & Textiles in Eastern Europe 2013; 21, 6: 64-73.
- 18. Matsuo M, Yamada T. Stress Relaxation Behavior of Knitted Fabrics under Uniaxial and Strip Biaxial Excitation as Estimated by Corresponding Principle between Elastic and Visco-Elastic Bodies. Textile Research Journal 2006; 76, 6: 465-477.
- 19. Pothan LA, Neelakantan NR, Rao B, Thomas S. Stress Relaxation Behavior of BananaFiber-reinforced Polyester Composites. Journal of Reinforced Plastics andComposites 2004; 23, 2: 153-165.
- 20. Pocienė R, Žemaitaitienė R, Vitkauskas A. Mechanical Properties and a Physical-Chemical Analysis of Acetate Yarns. Materials science (Medžiagotyra) 2004; 10, 1: 75-79.
- 21. Milašius R, Milašienė D, Jankauskaitė V. Investigation of Stress Relaxation of Breathable-Coated Fabric for Clothing and Footwear. Fibres & Textiles in Eastern Europe 2003; 11, 2: 53-55.
- 22. Dubinskaitė K, Van Langenhove L, Milašius R. Influence of Pile Height and Density on the End-Use Properties of Carpets. Fibres & Textiles in Eastern Europe 2008; 16, 3: 47-50.
- 23. Shi F. Modelling Stretching-Relaxation Properties of Yarns. Fibres & Textiles in Eastern Europe 2013; 21, 2: 51-55.
- 24. Pan N, Brookstein D. Physical Properties of Twisted Structures. II. Industrial Yarns, Cords and Ropes. Journal of Applied Polymer Science 2002; 83, 3: 610 –630.
- 25. Chidambaram D, Venkatraj R, Manisankar P. Solvent-Induced Modifications in Polyester Yarns. I. Mechanical Properties. Journal of Applied Polymer Science 2003; 87, 9: 1500–1510.
- 26. Milašius R, Laureckienė G. Prediction of Long-lasting Relaxation Properties of Polyester Yarns and Fabrics. Fibres & Textiles in Eastern Europe 2014; 22, 6: 53-55.
- 27. Nachane RP, Sundaram V. Analysis of Relaxation Phenomena in Textile Fibres Part I: Stress Relaxation. The Journal of the Textile institute 1995; 86, 1: 10-19.
- 28. Yamaguchi T, Kitagawa T, Yanagava T, Kimura H. Relationship between Stress Relaxation and Tensile Recovery of Filament Yarns. Journal of the Textile Machinery Society of Japan 1981; 27, 2: 43-49.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71fb0998-6f9d-47d9-b124-76190bf55921