PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationships between comminution and chemical, petrographic and mineralogical properties of ores, and their effect on concentration

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Especially in terms of energy costs, data on chemical, petrographical, and mineralogical analyses of ores or minerals can provide very important information for their production in the desired size distribution. Therefore, suitable crushing and grinding machines can be selected, taking into account the data affecting the comminution such as grain size, texture, metamorphism, and mineral or element contents. However, in most mineral processing plants, these data are rarely used to understand the response of ores or minerals to comminution. Analysis of the relationships between the chemistry, petrography, and mineralogy of ores and the breakage mechanism during crushing or grinding has been the subject of researchers in the comminution field in recent years. This study is a review of studies done so far on the relationships between the comminution and the chemical, petrographic, and mineralogical properties of different ores and minerals, and their effect on concentration.
Rocznik
Strony
art. no. 149892
Opis fizyczny
Bibliogr. 69 poz., rys., wykr.
Twórcy
autor
  • Hitit University, Department of Polymer Material Engineering, 19100, Corum, Turkey
Bibliografia
  • ADRIANI, G.F., WALSH, N. 2002. Physical properties and textural parameters of calcarenetic rocks: qualitative and quantitative evaluations, Eng. Geol., 67, 5-15.
  • AJALLOEIAN, R., JAMSHIDI, A., KHORASANI, R. 2020. Evaluating the effects of mineral grain size and mineralogical composition on the correlated equations between strength and Schmidt hardness of granitic rocks, Geotech. Geol. Eng., 40, 1-11. doi.org/10.1007/s10706-020-01321-6
  • ASKARIPOUR, M., SAEIDI, A., MERCIER-LANGEVIN, P., ROULEAU, A. 2022. A review of relationship between texture characteristic and mechanical properties of rock, Geotechnics, 2, 262-296.
  • AUSTIN, L.G., KLIMPEL, R.R., LUCKIE, P.T. 1984. Process Engineering of Size Reduction: Ball Milling, SME-AIME, New York, USA.
  • BASU, A., MISHRA, D.A. 2014. A method for estimating crack-initiation stress of rock materials by porosity, J. Geol. Soc. India., 84, 397-405.
  • BERRY, P., DANTINI, E.M., MASSACCI, P. 1984. Influence of mechanical characteristics of rock on size reduction processing, In: Proc. Min. Process. Extractive Metall., Beijing, IMM, pp. 15–26.
  • BOND, F.C. 1952. The third theory of comminution, Trans. Am. Inst. Min. Eng., 193, 484-494.
  • BRADSHAW, D. 2014. The role of process mineralogy in improving the process performance of complex sulphide ores, XXVII Int. Miner. Process. Congr. Santiago Chile Role Process Mineral. Improv. Process Perform. Complex Sulphide Ores, pp. 1–23.
  • CULLITY, B.D., STOCK, S.R., 2001. Elements of X-Ray Diffraction, third ed. Prentice-Hall, New York
  • DENIZ, V., BALTA, G., YAMIK, A. 1996. The interrelationships between Bond grindability of coals and impact strength index (ISI), point load index (Is) and Friability index (FD), Changing Scopes in Mineral Processing, A.A. Balkema, Roterdam, Netherlands, pp. 15-19.
  • DENIZ, V., GUNES, A.N., OZKAHRAMAN, S. 2001. Pre-processing and mineralogical investigation of chromite mines in the Fethiye Gocek-Uckopru before concentration, The J. Ore Dress., 3 (5), 24-32.
  • DENIZ, V., ONUR, T. 2002. Investigation of the breakage kinetics of pumice samples as dependent on powder filling in a ball mill, Int. J. Min. Process., 67, 71-78.
  • DENIZ, V., OZDAG, H. 2003. A new approach Bond grindability and work index: Dynamic elastic parameters, Miner. Eng. 16, 211-217.
  • DENIZ, V. 2004a. Relationships between Bond’s grindability (Gbg) and breakage parameters of grinding kinetic on limestone, Powder Technol., 109, 208-213.
  • DENIZ, V. 2004b. Investigation of breakage behaviour of two different pumice Stones, Eur. J. Miner. Process. Environ. Prot., 4, 162-167.
  • DENIZ, V. TANK, E, BOZ, E., UMUCU, Y. 2007. Investigation of breakage properties of chromites at Kayseri region, 20th International Mining Congress, Ankara, Turkey, pp. 57-65.
  • DENIZ, V. 2011. A new size distribution model by t-family curves for comminution of limestones in an impact crusher, Adv. Powder Technol., 22, 761-765.
  • DENIZ, V., CAYIRLI, S., UMUCU, Y. 2011. Investigation of breakage behavior of different mineralogical and morphological characteristic pumices, Granular Matter., 13, 623-629.
  • DENIZ, V. 2012. Estimation of the Bond grindability index from chemical analysis values and modulus of mixture of raw material of marls, Adv. Cem. Res., 24, 3-10.
  • DENIZ, V. 2013. Effects of mill speed on kinetic breakage parameters of four different particulate pumices, Part. Sci. Technol., 31, 101-108.
  • DENIZ, V. 2022a. The effects on the grinding parameters of chemical, morphological and mineralogical properties of three different calcites in a Hardgrove mill, Miner. Eng., 176, 107348.
  • DENIZ, V. 2022b. A new model between the Bond and Hardgrove grindability based on volumetric powder filling by using limestones,, Miner. Eng., 179, 107444.
  • DIAZ, E., VOISIN, L., KRACHT, W., MONTENEGRO, V. 2018. Using advanced mineral characterisation techniques to estimate grinding media consumption at laboratory scale, Miner. Eng., 121, 180-188.
  • DIAZ, E., PAMPARANA, G., VOISIN, L., KRACHT, W., MARTINZ, P. 2019. Exploring the effect of the geological texture at meso and micro scale on grinding performance, Miner. Eng., 144, 106032.
  • EBADNEJAD, A. 2016. Investigating of the effect of ore work index and particle size on the grinding modeling of some copper sulphide ores, J. Mater. Res. Technol., 5, 101-110.
  • EBERHARDT, E., STIMPSON, B. STEAD, D. 1999. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures, Rock Mech. Rock Eng., 32, 81-99.
  • GAY, S.L. 2004. A liberation model for comminution based on probability theory, Miner. Eng., 17, 525-534.
  • GRACA, L.M., LAGOEIRO, L.E., LIMA, R.M.F., BARBOSA, P.F., MACHADO, M.M. 2015. Effect of the morphological types in grinding of iron-ore products, Miner. Process. Extract. Metall. Rev., 36, 324-331.
  • GRIFFITH, A. 1921. Philosophical Transactions of the Royal Society of London Series A, 221, 163-198.
  • GRIMMER, H. 2016. The Basics of Crystallography and Diffraction, Fourth Edition, IUCr/Oxford Science Publications.
  • GUIMARAES, M.S., VALDES, J.R., PALOMINO, A.M., SANTAMARINA, J.C. 2007. Aggregate production, fines generation during rock crushing, Int. J. Miner. Process., 81(4), 237-247.
  • HATZOR, Y.H., PALCHIK, V. 1997. The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites, Int. J. Rock Mech. Min. Sci., 34, 805-816.
  • HUKKI, R.T. 1961. Proposal for a Solomonic settlement between the theories of von Rittinger, Kick, and Bond, Trans. Soc. Min. Eng. AIME, 220, 403-408.
  • IRWIN, G. 1957. Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., 24, 361-364.
  • ISIK, Y. 2007. Differences in the geotechnical properties of two types of gypsum: alabastrine and porphyritic, Bull. Eng. Geol. Env., 66, 187-195.
  • KEKEC, B., UNAL, M., SENSOGUT, C. 2006. Effect of the textural properties of rocks on their crushing and grinding features, J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater., 13, 385-392.
  • KING, R.P., SCHNEIDER, C.L. 1998. Stereological correction of linear grade distributions for mineral liberation, Powder Technol., 98, 21-37.
  • KING, R.P. 2001. Modelling and Simulation of Mineral Processing Systems, Butterworth-Heinemann, Oxford.
  • LI, L., AUBERTIN, M. 2003. A general relationship between porosity and uniaxial strength of engineering materials, Can. J. Civ. Eng., 658, 644-658.
  • LIU, J., HAN, L., CORIN, L.C., O’CONNOR, C.T. 2018. A study of the effect of grinding environment on the flotation of two copper sulphide ores, Miner. Eng., 122, 339-345.
  • LOIS-MORALES, P., EVANS, C., BONFILS, B. WEATHERLEY, D. 2020. The impact load cell as a tool to link comminution properties to geomechanical properties of rocks, Miner. Eng., 148, 106210.
  • LORENZEN, L., BARNARD, M.J. 2011. Why is mineralogical data essential for designing a metallurgical test work program for process selection and design?, The First AUSIMM International Geometallurgy Conference, Brisbane, Australia.
  • LOTTER, N. 2010. Modern process mineralogy: an integrated multi-disciplined approach to flowsheeting, Process Mineralogy ‘10, Cape Town, South Africa.
  • LOWRISON, G.C. 1974. Crushing and Grinding: The size reduction of solid materials, Butterworths, London, England
  • MWANGA, A., LAMBERGERG, P., ROSENKRANZ, J., 2015. Comminution test method using small drill core samples, Miner. Eng., 72, 129-139.
  • MWANGA, A., PARIAN, M., LAMBERG, P., ROSENKRANZ, J. 2017. Comminution modeling using mineralogical properties of iron ores, Miner. Eng., 111, 182-197.
  • NAPIER-MUNN, T.J., MORRELL, S., MORRISON, R.D., KOJOVIC, T., 1996. Mineral Comminution Circuits-Their operation and optimisation, Julius Kruttschnitt Mineral Research Centre, University of Queensland, Australia.
  • NOH, J.H., LEE, N.K. 2007. Applied-mineralogical study on the grinding effects and powder properties of high-Ca limestone, J. Korea Soc. Geosyst. Eng., 44, 191-207.
  • OLEDELE, T., BBOSA, L., WEATHERLEY, D. 2021. Textural and mineralogical controls on rock strength elucidated using a discrete element method numerical laboratory, Minerals, 11, 1015.
  • PAPADOPOULOS, Z., KOLAITI, E., MOURTZAS, N. 1994. The effect of crystal size on geotechnical properties of Neogene gypsum in Crete, Q. J. Eng. Geol., 27, 267-273.
  • PETRUK, W. 2000. Applied mineralogy in the mining industry, Amsterdam; New York, Elsevier Science BV.
  • RINCON, J., GAYDARDZHIEV, S., STAMENOV, L. 2019. Investigation on the flotation recovery of copper sulphosalts through an integrated mineralogical approach, Miner. Eng., 130, 36-47.
  • SCHMITT, R. 2021. A Geometallurgical Approach Towards the Correlation Between Rock Type Mineralogy and Grindability: A case study in Aitik mine, Sweden, M. Sci. Thesis, Luleå University of Technology, Sweden.
  • SHALCHIAN, H., VAHDATI KHAKI, J., BABAKHANI, A., TAGLIERI, G., MICHEKIS, I.D., DANIELE, V., VEGLIO, F. 2017. On the mechanism of molybdenite exfoliation during mechanical milling, J. Ceram. Int., 43(15), 12957-12967.
  • SEMSARI PARAPARI, P. 2021. Efficient mineral liberation–Multidimensional investigation of mechanical stress and ore texture, Ph.D. Thesis, Luleå University of Technology, Sweden.
  • STROHMAYR, S.J., BARNS, K.E., BRINDLEY, S.K., MUNRO, P.D., 1998. Mineralogy Controlling Metallurgy at Ernest Henry Mining, in Proceedings Mine to Mill, The AUSIMM, Melbourne, Australia, pp. 13-18.
  • SUTHERLAND, D., 1998. Applications of quantitative process mineralogy through the mining cycle, Proceedings of AusIMM Annual Conference'98: The Mining Cycle, Mount Isa, Queensland, Australia, pp. 333-337.
  • TAGGART, A.F. 1945. Handbook of Mineral Dressing; Ores and industrial minerals, John Wiley & Sons Inc., Austin, TX., USA.
  • TAVARES, L.M., KING, R.P. 1998. Single-particle fracture under impact loading, Int. J. Mineral Process., 54, 1-28.
  • THIVIERGE, A., BOUCHARD, J., DESBIENS, A., PEREZ-GARCIA, E.M. 2019. Modeling the product net value of a grinding-flotation circuit, IFAC-Papers On-Line, 52(14), 18-23.
  • TOGERSENA, M.K., KLEIVA, R.A., ELLEFMOA, S., AASLYA, K. 2018. Mineralogy and texture of the Storforshei iron formation, and their effect on grindability, Miner. Eng., 125, 176-189.
  • TUNGPALAN, K., WIGHTMAN, E., MANLAPIG, E. 2015. Relating mineralogical and textural characteristics to flotation behaviour, Miner. Eng., 82, 136-140.
  • UNLAND, G., SZCZELINA, P. 2004. Coarse crushing of brittle rocks by compression. Int. J. Miner. Process., 74, S209-S217.
  • VELAZQUEZ, A.L.C., MENENDEZ-AGUADO, J.M., BROWN, R.L. 2008. Grindability of lateritic nickel ores in Cuba, Powder Technol., 182, 113-115.
  • VERNIK, L., BRUNO, M., BOVBERG, C. 1993. Empirical relations between compressive strength and porosity of siliciclastic rocks, Int. J. Rock Mech. Min. Sci. 30, 677-680.
  • WANG, Y. 2015. Numerical modelling of heterogeneous rock breakage behavior based on texture images, Miner. Eng., 74, 130-141.
  • WELSBY, S.D.D. 2009. On the Interpretation of Floatability Using the Bubble Load, Ph.D. thesis, The University of Queensland, Queensland, Australia.
  • WIEGEL, R.L., LI, K. 1967. A random model for mineral liberation by size reduction, Trans. Am. Inst. Min. Eng., 238, 179-189.
  • YILDIRIM, B.G. 2016. Development of a correlation between mineralogy, rock strength measures, and breakage of copper porphyries, Ph.D. Thesis, The University of Queensland, Australia.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71fa7630-56a5-4c7b-9b69-340128f3a317
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.