Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main aim of this work is to study the thermal efficiency of a new type of a static mixer and to analyse the flow and temperature patterns and heat transfer efficiency. The measurements were carried out for the static mixer equipped with a new mixing insert. The heat transfer enhancement was determined by measuring the temperature profiles on each side of the heating pipe as well as the temperature field inside the static mixer. All experiments were carried out with varying operating parameters for four liquids: water, glycerol, transformer oil and an aqueous solution of molasses. Numerical CFD simulations were carried out using the two-equation turbulence k-ω model, provided by ANSYS Workbench 14.5 software. The proposed CFD model was validated by comparing the predicted numerical results against experimental thermal database obtained from the investigations. Local and global convective heat transfer coefficients and Nusselt numbers were detrmined. The relationship between heat transfer process and hydrodynamics in the static mixer was also presented. Moreover, a comparison of the thermal performance between the tested static mixer and a conventional empty tube was carried out. The relative enhancement of heat transfer was characterised by the rate of relative heat transfer intensification.
Czasopismo
Rocznik
Tom
Strony
59--72
Opis fizyczny
Bibliogr. 41 poz., tab., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Abbasfard H., Ghanbari M., Ghasemi A., Ghahraman G., Jokar S.M., Rahimpour M.R., 2014. CFD modelling of flow mal-distribution in an industrial ammonia oxidation reactor: A case study. Appl. Therm. Eng., 67, 223-229. DOI: 10.1016/j.applthermaleng.2014.03.035.
- 2. Afrianto H., Tanshen R.M., Munkhbayar B., Suryo U.T., Chung H., Jeong H., 2014. A numerical investigation on LNG flow and heat transfer characteristic in heat exchanger. Int. J. Heat Mass Transfer, 68, 110–118. DOI:10.1016/j.ijheatmasstransfer.2013.09.036.
- 3. Defraeye T., Blocken B., Carmeliet J., 2010. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer. Int. J. Heat Mass Transfer, 53, 297–308. DOI: 10.1016/j.ijheatmasstransfer.2009.09.029.
- 4. Delaplace G., Torrez C., Leuliet J.-C., Belaubre N., Andre C., 2001. Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with a non standard helical ribbon impeller. Chem. Eng. Res. Des., 79, 927–937. DOI: 10.1205/02638760152721460.
- 5. Eesa M., Barigou M., 2010. Enhancing radial temperature uniformity and boundary layer development in viscous Newtonian and non-Newtonian flow by transverse oscillations: A CFD study. Chem. Eng. Sci., 65, 2199–2212. DOI: 10.1016/j.ces.2009.12.022.
- 6. Fard M.H., Esfahany M.N., Talaie M.R., 2010. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int. Commun. Heat Mass Transfer, 37, 91–97. DOI: 10.1016/j.icheatmasstransfer.2009.08.003.
- 7. Freund S., Kabelac S., 2010. Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD. Int. J. Heat Mass Transfer, 53, 3764–3781. DOI:10.1016/j.ijheatmasstransfer.2010.04.027.
- 8. Ghanem A., Habchi Ch., Lemenand T., Della Valle D., Peerhossaini H., 2013. Energy efficiency in process industry – High efficiency vortex (HEV) multifunctional heat exchanger. Renewable Energy, 56, 96-104. DOI: 10.1016/j.renene.2012.09.024.
- 9. Ghanem A., Lemenand T., Della Valle D., Peerhossaini H., 2014. Static mixers: Mechanisms, applications,and characterization methods – A review. Chem. Eng. Res. Des., 92, 205-228. DOI: 10.1016/j.cherd.2013.07.013.
- 10. Habchi C., Harion J.-C., 2014. Residence time distribution and heat transfer in circular pipe fitted with longitudinal rectangular wings. Int. J. Heat Mass Transfer, 74, 13–24. DOI: 10.1016/j.ijheatmasstransfer.2014.03.007.
- 11. Han H., Li B., Yu B., He Y., Li F., 2012. Numerical study of flow and heat transfer characteristics in outward convex corrugated tubes. Int. J. Heat Mass Transfer, 55, 7782–7802. DOI: 10.1016/j.ijheatmasstransfer.2012.08.007.
- 12. Hirschberg S., Koubek R., Moser F., Schöck J., 2009. An improvement of the Sulzer SMXTM static mixer significantly reducing the pressure drop. Chem. Eng. Res. Des., 87, 524–532. DOI: 10.1016/j.cherd.2008.12.021.
- 13. Hobler T., 1986. Heat transfer and heat exchangers. Wydawnictwa Naukowo-Techniczne, Warszawa, Poland (In Polish).
- 14. Jaworski Z., Pianko-Oprych P., 2002. Two-phase laminar flow simulations in a Kenics static mixer. Standard Eulerian and Lagrangian approaches. Chem. Eng. Res. Des., 80, 846-854. DOI: 10.1205/026387602321143462.
- 15. Jayakumar J.S., Mahajani S.M., Mandal J.C., Iyer K.N., Vijayan P.K., 2010. CFD analysis of single-phase flows inside helically coiled tubes. Comput. Chem. Eng., 34, 430–446. DOI: 10.1016/j.compchemeng.2009.11.008.
- 16. Jones S.C., 2000. Static mixers for water treatment: A computational fluid dynamics model. PhD Thesis. Georgia Institute of Technology, Source DAI-B 61/04, p. 2132.
- 17. Jones S.C., Sotiropoulos F., Amirtharajah A., 2002. Nuemrical modeling of helical static mixers for water treatment. J. Environ. Eng., 128, 431-440. DOI: 10.1061/(ASCE)0733-9372.
- 18. Jun S., Puri V.M., 2005. 3D milk-fouling model of plate heat exchangers using computational fluid dynamics. Int.
- 19. J. Dairy Technol. 58, 214-224. DOI: 10.1111/j.1471-0307.2005.00213.x.
- 20. Kougoulos E., Jones A.G., Wood-Kaczmar M., 2005. CFD modelling of mixing and heat transfer in batch cooling crystallizers: Aiding the development of a hybrid predictive compartmental model. Chem. Eng. Res. Des., 83, 30–39. DOI: 10.1205/cherd.04080.
- 21. Lin F.B., Sotiropoulos F., 1997. Strongly-coupled multigrid method for 3-D incompressible flows using near-wall turbulence closures. J. Fluids Eng., 119, 314-324. DOI: 10.1115/1.2819136.
- 22. Lisboa P.F., Fernandes J., Simões P.C., Mota J.P.B., Saatdijian E., 2010. Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide. J. Supercrit. Fluids, 55, 107–115. DOI: 10.1016/j.supflu.2010.08.005.
- 23. Masiuk M., Szymański E., 1997. Polish Patent No. 324,150. Warszawa: Polish Patent and Trademark Office.
- 24. Meijer H.E.N., Singh M. K., Anderson P.D., 2012. On the performance of static mixers: A quantitative comparison. Prog. Polym. Sci., 37, 1333-1349. DOI: 10.1016/j.progpolymsci.2011.12.004.
- 25. Norton T., Tiwari B., Da Sun W., 2013. Computational fluid dynamics in the design and analysis of thermal processes: A review of recent advances. Crit. Rev. Food Sci. Nutr., 53, 251-275. DOI: 10.1080/10408398.2010.518256.
- 26. Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of Industrial Mixing. Science and Practice, Wiley-Interscience, A John Wiley & Sons, Inc., Publication.
- 27. Peng S.H., Davidson L., Holmberg S., 1996. The two-equations turbulence k-ω model applied to recirculating ventilation flows. Rept. 96/13, Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg. Perner-Nochta I., Posten C., 2007. Simulations of light intensity variation in photobioreactors. J. Biotechnol., 131, 276–285. DOI: 10.1016/j.jbiotec.2007.05.024.
- 28. Qi Y., Kawaguchi Y., Christensen R.N., Zakin J.L., 2003. Enhancing heat transfer ability of drag reducing surfactant solutions with static mixers and honeycombs. Int. J. Heat Mass Transfer, 46, 5161–5173. DOI: 10.1016/S0017-9310(03)00221-7.
- 29. Rosaguti N.R., Fletcher D.F., Haynes B.S., 2006. Laminar flow and heat transfer in a periodic serpentine channel with semi-circular cross-section. Int. J. Heat Mass Transfer, 49, 2912–2923. DOI: 10.1016/j.ijheatmasstransfer.2006.02.015.
- 30. Schietekat C.M., van Goethem M.W.M., van Geem K.M., Marin G.B., 2014. Swirl flow tube reactor technology: An experimental and computational fluid dynamics study. Chem. Eng. J., 238, 56–65. DOI: 10.1016/j.cej.2013.08.086.
- 31. Solano J.P., Herrero R., Espín S., Phan A.N., Harvey A.P., 2012. Numerical study of the flow pattern and heat transfer enhancement in oscillatory baffled reactors with helical coil inserts. Chem. Eng. Res. Des., 90, 732–742. DOI: 10.1016/j.cherd.2012.03.017.
- 32. Stringer R. M., Zang J., Hillis A.J., 2014. Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Eng., 87, 1-9. DOI: 10.1016/j.oceaneng.2014.04.017.
- 33. Thakur R.K., Vial C., Nigam K.D.P., Nauman E.B., Djelveh G., 2003. Static mixers in the process industries - A review. Chem. Eng. Res. Des., 81, 787-826. DOI: 10.1205/026387603322302968.
- 34. Togun H., Safaei M.R., Sadri R., Kazi S.N., Baraduin A., Hooman K., Sadeghinezhad E., 2014. Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl. Math. Comput., 239, 153-170. DOI :10.1016/j.amc.2014.04.051.
- 35. Utomo A.T., Poth H., Robbins P.T., Wacek A.W., 2012. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int. J. Heat Mass Transfer, 55, 7772–7781. DOI: 10.1016/j.ijheatmasstransfer.2012.08.003.
- 36. van Goethem M.W.M., Jelsma E., 2014. Numerical and experimental study of enhanced heat transfer and pressure drop for high temperature applications. Chem. Eng. Res. Des., 92, 663–671. DOI: 10.1016/j.cherd.2014.02.009.
- 37. Wang Y., Hou M., Deng X., Li L., Huang C., Huang H., Zhang G., Chen C., Huang W., 2011. Configuration optimization of regularly spaced short-length twisted tape in a circular tube to enhance turbulent heat transfer using CFD modeling. Appl. Therm. Eng., 31, 1141-1149. DOI: 10.1016/j.applthermaleng.2010.12.009.
- 38. Wilcox D.C., 1988. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J., 26, 1299-1310. DOI: 10.2514/3.10041.
- 39. Yataghene M., Fayolle F., Legrand J., 2009. Experimental and numerical analysis of heat transfer including viscous dissipation in a scraped surface heat exchanger. Chem. Eng. Process., 48, 1445–1456. DOI: 10.1016/j.cep.2009.07.012.
- 40. Zare M., Hashemabadi S.H., 2013. Experimental study and CFD simulation of wall effects on heat transfer of an extrudate multi-lobe particle. Int. Commun. Heat Mass Transfer, 43, 122-130. DOI: 10.1016/j.icheatmasstransfer.2013.02.010.
- 41. Zheng Z., Fletcher D.F., Haynes B.S., 2013. Chaotic advection in steady laminar heat transfer simulations: Periodic zigzag channels with square cross-sections. Int. J. Heat Mass Transfer, 57, 274–284. DOI: 10.1016/j.ijheatmasstransfer.2012.10.029.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71deb543-f3bb-48ee-8730-542b3c04d76b