PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlled Synthesis and Application of Nano-energetic Materials Based on the Copper Oxide/Al System

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanothermite composites containing metal oxide and metal fuel are attracting attention due to their outstanding combustion characteristics. The morphology of metal oxide is important for the performance of nanothermite composites. In this paper, branch-, plate-, sphere-, and hollow sphere-like CuO nano/microstructures were synthesized via a facile hydrothermal process. The CuO/Al based nanothermites were prepared via ultrasonic mixing of the asobtained CuO products and nano-Al. The combustion behaviour of CuO/Al based nanothermites was analyzed by DSC and laser ignition. This study shows that this nanoscale mixing resulted in a large interfacial contact area and low diffusional resistance between the fuel and the oxidizer, and the reaction reflects large energy and laser ignition sensitivity.
Rocznik
Strony
129--144
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
Bibliografia
  • [1] Apperson S., Shende R.V., Subramaniaan S., Tappmeyer D., Gangopadhyay S., Generation of Fast Propagating Combustion and Shock Waves with Copper Oxide/Aluminum Nanothermite Composites, Appl. Phys. Lett., 2007, 91(24), 243109.
  • [2] Yetter R.A., Risha G.A., Son S.F., Metal Particle Combustion and Nanotechnology, Proc. Combust. Inst., 2009, 32(2), 1819-1838.
  • [3] Granier J.J., Pantoya M.L., Laser Ignition of Nanocomposite Thermites, Combust. Flame, 2004, 138(4), 373-383.
  • [4] Song X., Wang J., Yang G.C., Nie F.D., Synthesis and Characterization of Al/CuO Nanothermite, Chin. J. Energ. Mater., 2013, 21(1), 39-43.
  • [5] Feng J., Jian G., Liu Q., Zachariah M.R., Passivated Iodine Pentoxide Oxidizer for Potential Biocidal Nanoenergetic Applications, ACS Appl. Mater. Interfaces, 2013, 5, 8875-8880.
  • [6] Ohkura Y., Liu S., Rao P.M., Synthesis and Ignition of Energetic CuO/Al Core/ Shell Nanowires, Proc. Combust. Inst., 2011, 33(2), 1909-1915.
  • [7] Koch E.C., 2006-2008 Annual Review on Aerial Infrared Decoy Flares, Propellants Explos. Pyrotech., 2009, 34(1), 6-12.
  • [8] Shen J., Chan Y.C., Research Advances in Nano-composite Solders, Microelectron Reliab., 2009, 49(3), 223-234.
  • [9] Piercey D.G., Klapötke T.M., Nanoscale Aluminum-metal Oxide (Thermite) Reactions for Application in Energetic Materials, Cent. Eur. J. Energ. Mater., 2010, 7(2), 115-129.
  • [10] Zhang K., Rossi C., Petrantoni M., Mauran N., A Nano Initiator Realized by Integrating Al/CuO-based Nanoenergetic Materials with a Au/Pt/Cr Microheater, J. Microelectromech. Syst., 2008, 17(4), 832-836.
  • [11] Yan S., Jian G., Zachariah M.R., Electrospun Nanofiber-based Thermite Textiles and Their Reactive Properties, ACS Appl. Mater. Interfaces, 2012, 4(12), 6432-6435.
  • [12] Wen D., Nanofuel as a Potential Secondary Energy Carrier, Energ. Environ. Sci., 2010, 3(5), 591-600.
  • [13] Jian G., Piekiel N.W., Zachariah M.R., Time-resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: a Mechanistic Study, J. Phys. Chem. C, 2012, 116(51), 26881-26887.
  • [14] He S.M., Li J.S., Wang J., Yang G.C., Qiao Z.Q., Facile Synthesis and Lithium Storage Performance of Hollow CuO Microspheres, Mater. Lett., 2014, 129, 5-7.
  • [15] Zhou L., Piekiel N., Chowdhury S., Zachariah M.R., Time-resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: the Role of Oxygen Release, J. Phys. Chem. C, 2010, 114(33), 14269-14275.
  • [16] Kwon J., Ducéré J.M., Alphonse P., Bahrami M., Petrantoni M., Veyan J.F., Tenailleau C., Estève A., Rossi C., Chabal Y.J., Interfacial Chemistry in Al/CuO Reactive Nanomaterial and Its Role in Exothermic Reaction, ACS Appl. Mater. Interfaces, 2013, 5(3), 605-613.
  • [17] Kennedy A.J., Melby N.L., Moser R.D., Bednar A.J., Son S.F., Lounds C.D., Laird J.G., Nellums L.R., Johnson D.R., Steevens J.A., Fate and Toxicity of CuO Nanospheres and Nanorods Used in Al/CuO Nanothermites before and after Combustion, Environ. Sci. Technol., 2013, 47(19), 11258-11267.
  • [18] Stamatis D., Zhu X., Schoenitz M., Dreizin E.L., Redner P., Consolidation and Mechanical Properties of Reactive Nanocomposite Powders, Powder Technol., 2011, 208, 637-642.
  • [19] Ermoline A., Stamatis D., Dreizin E.L., Low-temperature Exothermic Reactions in Fully Dense Al-CuO Nanocomposite Powders, Thermochim. Acta, 2012, 527, 52-58.
  • [20] Badiola C., Schoenitz M., Zhu X., Dreizin E.L., Nanocomposite Thermite Powders Prepared by Cryomilling, J. Alloy. Compd., 2009, 488(1), 386-391.
  • [21] Wang H.Y., Jian G.Q., Egan G.C., Zachariah M.R., Assembly and Reactive Properties of Al/CuO Based Nanothermite Microparticles, Combust. Flame, 2014, 161, 2203-2208.
  • [22] Kim D.K., Bae J.H., Kang M.K., Kim H.J., Analysis on Thermite Reactions of CuO Nanowires and Nanopowders Coated with Al, Curr. Appl. Phys., 2011, 11, 1067-1070.
  • [23] Zhang K., Rossi C., Ardila Rodriguez G.A., Development of a Nano-Al/CuO Based Energetic Material on Silicon Substrate, Appl. Phys. Lett., 2007, 91(11), 113117.
  • [24] Sullivan K., Young G., Zachariah M.R., Enhanced Reactivity of Nano-B/Al/CuO MIC’s, Combust. Flame, 2009, 156(2), 302-309.
  • [25] Petrantoni M., Rossi C., Conédéra V., Bourrier D., Alphonse P., Tenailleau C., Synthesis Process of Nanowired Al/CuO Thermite, J. Phys. Chem. Solids, 2010, 71, 80-83.
  • [26] Shende R., Subramanian S., Hasan S., Apperson S., Thiruvengadathan R., Gangopadhyay K., Gangopadhyay S., Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-nanoparticles, Propellants Explos. Pyrotech., 2008, 33(2), 122-130.
  • [27] Sanders V.E., Asay B.W., Foley T.J., Tappan B.C., Pacheco A.N., Son S.F., Reaction Propagation of Four Nanoscale Energetic Composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3), J. Propul. Power, 2007, 23(4), 707-714.
  • [28] Jian G., Liu L., Zachariah M.R., Facile Aerosol Route to Hollow CuO Spheres and Its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators, Adv. Funct. Mater., 2013, 23, 1341-1346.
  • [29] Zhang K., Rossi C., Tenailleau C., Alphonse P., Chane-Ching J.Y., Synthesis of Large-area and Aligned Copper Oxide Nanowires from Copper Thin Film on Silicon Substrate, Nanotechnology, 2007, 18(27), 275607.
  • [30] Qin Y., Zhang F., Chen Y., Zhou Y., Zhu A., Luo Y., Tian Y., Yang J., Hierarchically Porous CuO Hollow Spheres Fabricated via a One-pot Template-free Method for High-performance Gas Sensors, J. Phys. Chem. C, 2012, 116, 11994-12000.
  • [31] Zhang X., Wang G., Liu X., Wu J.J., Li M., Gu J., Liu H., Fang B., Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensors, J. Phys. Chem. C, 2008, 112(43), 16845-16849.
  • [32] Zhang Y.X., Huang M., Kuang M., Liu C.P., Tan J.L., Dong M., Yuan Y., Zhao X.L., Wen Z., Facile Synthesis of Mesoporous CuO Nanoribbons for Electrochemical Capacitors Applications, Int. J. Electrochem. Sci., 2013, 8, 1366-1381.
  • [33] Singh I., Bedi R.K., Surfactant-assisted Synthesis, Characterizations, and Room Temperature Ammonia Sensing Mechanism of Nanocrystalline CuO, Solid State Sci., 2011, 13(11), 2011-2018.
  • [34] Hong J., Li J., Ni Y., Urchin-like CuO Microspheres: Synthesis, Characterization, and Properties, J. Alloy. Compd., 2009, 481(1), 610-615.
  • [35] Xiao H.M., Fu S.Y., Zhu L.P., Li Y.Q., Yang G., Controlled Synthesis and Characterization of CuO Nanostructures through a Facile Hydrothermal Route In the Presence of Sodium Citrate, Eur. J. Inorg. Chem., 2007, 14, 1966-1971.
  • [36] Shao Q., Wang L., Wang X., Yang M., Ge S., Yang X. Wang J., Hydrothermal Synthesis and Photocatalytic Property of Porous CuO Hollow Microspheres via PS Latex as Templates, Solid State Sci., 2013, 20, 29-35.
  • [37] Xu X., Zhang M., Feng J., Zhang M., Shape-controlled Synthesis of Single crystalline Cupric Oxide by Microwave Heating Using an Ionic Liquid, Mater Lett., 2008, 62(17), 2787-2790.
  • [38] Wang J., Fan X.M., Wu D.Z., Dai J., Liu H., Liu H.R., Zhou Z.W., Fabrication of CuO/T-ZnOw Nanocomposites using Photo-deposition and Their Photocatalytic Property, Appl. Surf. Sci., 2011, 258(5), 1797-1805.
  • [39] Yang M., He J., Fine Tuning of the Morphology of Copper Oxide Nanostructures and Their Application in Ambient Degradation of Methylene Blue, J. Colloid Interf. Sci., 2011, 355(1), 15-22.
  • [40] Chen C., Yu C., Two-dimensional Image Characterization of Powder Mixing and its Effects on the Solid-state Reactions, Mater. Chem. Phys., 2004, 85(1), 227-237.
  • [41] Ilunga K., Del Fabbro O., Yapi L., Focke W.W., The Effect of Si-Bi2O3 on the Ignition of the Al-CuO Thermite, Powder Technol., 2011, 205(1), 97-102.
  • [42] Srivastava D.K., Weinrotter M., Iskra K., Agarwal A.K., Wintner E., Characterisation of Laser Ignition in Hydrogen-air Mixtures in a Combustion Bomb, Int. J. Hydrogen Energ., 2009, 34(5), 2475-2482.
  • [43] Mullett J.D., Dodd R., Williams C.J., Triantos G., Dearden G., Shenton A.T., Watkins K.G., Carroll S.D., Scarisbrick A.D., Keen S., The Influence of Beam Energy, Mode and Focal Length on the Control of Laser Ignition in an Internal Combustion Engine, J. Phys. D: Appl. Phys., 2007, 40(15), 4730-4739.
  • [44] Morsy M.H., Review and Recent Developments of Laser Ignition for Internal Combustion Engines Applications, Renewable Sustainable Energy Rev., 2012, 16(7), 4849-4875.
  • [45] Weinrotter M., Iskra K., Al-Janabi A.H., Kopecek H., Wintner E., Laser Ignition of Engines: Multipoint, Fiber Delivery, and Diagnostics, 21st European Mask and Lithography Conference, 2005, 88-99.
  • [46] Stacy S.C., Pantoya M.L., Laser Ignition of Nano-composite Energetic Loose Powders, Propellants Explos. Pyrotech., 2013, 38(3), 441-447.
  • [47] Qiu T.Q., Longtin J.P., Tien C.L., Characteristics of Radiation Absorption in Metallic Particles, J. Heat Transfer, 1995, 117(2), 340-345.
  • [48] Rashkovskii S.A., Hot-spot Combustion of Heterogeneous Condensed Mixtures, Thermal Percolation, Combust., Explos. Shock Waves (Engl. Transl.), 2005, 41(1), 35-46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71db0ba4-749e-4a9a-abe9-0e78ccd1c043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.