Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving (k, ψ)-Hilfer fractional derivatives.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220253
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Department of Mathematics, School of Advance Sciences, VIT-AP University, Amravati 522237, India
autor
- Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran
autor
- Institute of Research and Development of Processes, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
Bibliografia
- [1] A. A. Eldred, W. A. Kirk, and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia. Math. 171 (2005), 283–293.
- [2] L. Gholizadeh and E. Karapınar, Best proximity point results in dislocated metric spaces via R-functions, RACSAM 112 (2018), 1391–1407, DOI: https://doi.org/10.1007/s13398-017-0431-6.
- [3] P. Magadevan, S. Karpagam, and E. Karapinar, Existence of fixed point and best proximity point of p-cyclic orbital phi-contraction map, Nonlinear Anal. Modell. Control 27 (2022), no. 1, 91–101, DOI: https://doi.org/10.15388/namc.2022.27.25188.
- [4] M. Gabeleh, A characterization of proximal normal structures via proximal diametral sequences, J. Fixed Point Theory Appl. 19 (2017), 2909–2925.
- [5] G. Darbo, Punti uniti in transformazioni a codominio non compatto (Italian), Rend. Sem. Math. Univ. Padova 24 (1955), 84–92.
- [6] B. N. Sadovskii, Limit-compact and condensing operators (Russian), Uspehi Mat. Nauk 27 (1972), 81–146.
- [7] A. A. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovski, Measure of Noncompactness and Condensing Operators, Springer, Basel AG, 1992.
- [8] J. Banas and K. Goebel, Measure of noncompactness in banach spaces, Lecture notes in Pure and Appllied Mathematics, vol 60, Dekker, New York, 1980.
- [9] J. Banas, M. Jleli, M. Mursaleen, B. Samet, and C. Vetro (Eds.), Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer, Singapore, 2017.
- [10] M. Gabeleh and J. Markin, Optimum solutions for a system of differential equations via measure of noncompactness, Indagationes Mathematicae, 29 (2018), no. 3, 895–896, DOI: https://doi.org/10.1016/j.indag.2018.01.008.
- [11] A. Das, S. A. Mohiuddine, A. Alotaibi, and B. C. Deuri, Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces, Alexandr. Eng. J. 61 (2021), no. 3, 2010–2015.
- [12] M. Gabeleh and C. Vetro, A new extension of Darbo’s fixed point theorem using relatively Meir-Keeler condensing operators, Bull. Aust. Math. Soc. 98 (2018), no. 2, 286–297, DOI: https://doi.org/10.1017/S000497271800045X.
- [13] P. R. Patle, D. K. Patel, and R. Arab, Darbo type best proximity point results via simulation function with application, Afrika Matematika 31 (2020), 833–845.
- [14] M. Gabeleh, M. Asadi, and E. Karapinar, Best proximity results on condensing operators via measure of noncompactness with application to integral equations, Thai J. Math. 18 (2020), no. 3, 1519–1535.
- [15] H. K. Nashine, R. Arab, P. R. Patle, and D. K. Patel, Best proximity point results via measure of noncompactness and application, Numer. Funct. Anal. Optim. 42 (2021), no. 4, 430–442, DOI: https://doi.org/10.1080/01630563.2021.1884570.
- [16] M. Gabeleh, D. K. Patel, and P. Patle Darbo type best proximity point (pair) results using measure of noncompactness with application, Fixed Point Theory 23 (2022), no. 1, 247–266.
- [17] P. R. Patle, M. Gabeleh, and V. Rakočević, Sadovskii type best proximity point (pair) theorems with an application to fractional differential equations, Mediterr. J. Math. 19 (2022), 141, DOI: https://doi.org/10.1007/s00009-022-02058-7.
- [18] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci., 2020 (2020), DOI: https://doi.org/10.1002/mma.6652.
- [19] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM 115 (2021), 155, DOI: https://doi.org/10.1007/s13398-021-01095-3.
- [20] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math. 20 (2021), no. 2, 313–333.
- [21] K. Balachandran, L. Byszewski, and J. K. Kim, Nonlocal Cauchy problem for second order functional differential equations and fractional differential equations, Nonlinear Funct. Anal. Appl. 24 (2019), no. 3, 457–475.
- [22] J. A. Nanware and M. N. Gadsing, Existence and uniqueness of a solution for first order nonlinear Liouville-Caputo fractional differential equations, Nonlinear Funct. Anal. Appl. 26 (2021), no. 5, 1011–1020.
- [23] N. Anakira, Z. Chebana, T-E. Oussaeif, I. M. Batiha, and A. Ouannas, A study of a weak solution of a diffusion problem for a temporal fractional differential equation, Nonlinear Funct. Anal. Appl. 27 (2022), no. 3, 679–689.
- [24] K. M. Furati, M. D. Kassim, and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl. 64 (2012), 1616–1626.
- [25] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k -symbol, Divulgaciones Matemáticas 15 (2007), no. 2, 179–192.
- [26] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE access 6 (2018), 64946–53.
- [27] K. D. Kuchhe, A. D. Mali, On the nonlinear k ψ,( )-Hilfer fractional differential equations, Chaos Solitons Fractals 152 (2021), 111335.
- [28] J. Sousa and E. Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91.
- [29] J. Sousa and E. Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, J. Fixed Point Theory Appl. 20 (2018), 96, DOI: https://doi.org/10.1007/s11784-018-0587-5.
- [30] P. Angelis, R. Marchis, A. L. Martire, and I. Oliva, A mean-value approach to solve fractional differential and integral equations, Chaos Solitons Fractals 138 (2020), 109895.
- [31] A. A. Kilbas, H. M. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
- [32] A. Ambrosetti, Un teorema di esistenza per Ie equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Padova 39 (1967), 349–361.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71da94b5-4bac-439c-8668-331d23cb0e07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.