PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mechanical strength of phosphates under friction-induced cross-linking

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperature-induced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young’s modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young’s modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young’s modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by sol-gel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly
Rocznik
Strony
201--204
Opis fizyczny
Bibliogr. 47 poz., wykr.
Twórcy
autor
  • Queensland University of Technology, School of Engineering Systems, GPO Box 2434 Brisbane, Q 4001, Australia
  • University of Technology and Engineering, 85-326 Bydgoszcz, Poland
  • Queensland University of Technology, School of Engineering Systems, GPO Box 2434 Brisbane, Q 4001, Australia
autor
  • Queensland University of Technology, School of Engineering Systems, GPO Box 2434 Brisbane, Q 4001, Australia
  • Queensland University of Technology, School of Engineering Systems, GPO Box 2434 Brisbane, Q 4001, Australia
Bibliografia
  • [1] M. Karabulut, E. Melnik, R. Stefan, G.K. Marasinghe, C.S. Ray, C.R. Kurkjian and D.E. Day, Mechanism and structural properties of phosphate glasses, J. Non-Cryst. Solids, 288 (2001) 8-17.
  • [2] R.K. Brow, J. Non-Cryst. Solids, Review: the structure of simple phosphate glasses, 263-264 (2000) 1-28.
  • [3] B.C. Sales and L.A. Boatner, Science, 226 (1984) 45.
  • [4] D.E. Day, Z. Wu, C.S.M. Ray and P. Hrma, Chemically durable iron phosphate glass waste forms,J. Non-Cryst. Solids, 241 (1998) 1-12.
  • [5] C.R. Kurkjian, Mechanical properties of phosphate glasses, J. Non-Cryst. Solids, 263-264 (2000) 207-212
  • [6] S. W. Martin, Eur. J. Solid State Inorg. Chem., 28 (1991) 164.
  • [7] U. Hoppe, A structural model for phosphate glasses, J. Non-Cryst. Solids, 195 (1966) 138-147.
  • [8] U. Hoppe, R. Kranold, D. Stachel, A. Barz and A.C. Hannon, A neutron and X-ray diffraction study of the structure of the La3P3O9, J. Non-Cryst. Solids, 232-234 (1998) 44-51.
  • [9] G.K. Marasinghe, M. Karabulut, C.S. Ray, D.E. Day, M.G. Shumsky, W.B. Yelon, C.H. Booth, P.G. Allen and D.K. Shuh, Structural features of iron phosphate glasses, J. Non-Cryst. Solids, 222 (1997) 144-152.
  • [10] M. Ijjaali, G. Venturini, R. Geradin, B. Malaman and C. Gleitzer, Eur. J. Solid State Inorg. Chem., 28 (1991) 983.
  • [11] T. Jermoumi, S. Hassan and M. Hafied, Ultrafast third-order nonlinear optical spectroscopy of chlorinated hydrocarbons, Vib. Spectrosc., 32 (2003) 207-213.
  • [12] S.T. Reis, M. Karabulut and D.E. Day, Chemical durability and structure of zinc–iron phosphate glasses, Non-Cryst. Solids, 292 (2001) 150-157.
  • [13] R.K. Brow, D.R. Tallant, S.T. Myers and C.C. Phifer The short-range structure of zinc polyphosphate glass, J. Non-Cryst. Solids, 191 (1995) 45-55.
  • [14] G.E. Brown, K.D. Keefer and P.M. Fenn, Abstr. Geol. Soc. Amer., 10 (1978) 373.
  • [15] A. Behrens and H. Schafstall, 2D and 3D simulation of complex multistage forging processes by use of adaptive friction coefficient, J. Mater. Process. Technol., 80-81 (1998) 298-303.
  • [16] Y.C. Lin, S.W. Wang and T.M. Chen,A study on the wear behavior of hardened medium carbon steel, J. Mater. Process. Technol., 120 (2002) 126-132.
  • [17] A. Olefinjana, T. Tesfamichael and J.M. Bell, Chemical modification and the attending surface hardness of low alloy steel through medium energy nitrogen ion implantation J. Mater. Process. Technol., 164-165 (2005) 905-910.
  • [18] P.A. Willermet, DP. Dailey, Ro.Carter, III, PJ. Schmitz and W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates, Tribol. Int., 28 (1995) 177-187.
  • [19] P.A. Willermet, R.O. Carter, P.J. Schmitz, M. Everson, D.J. Scholl and W.H. Weber, Formation, structure, and properties of lubricants-derived antiwear films, Lub. Sci., 9 (1997) 325-48.
  • [20] J.M. Martin, C. Grossiord, T. Le Mogne and J. Igarashi, Role of nitrogen in tribochemical interaction between Zndtp and succinimide in boundary lubrication, Tribol. Int., 33 (2000) 453-459.
  • [21] J.M. Martin, Antiwear mechanism of zinc dithiophosphate: a chemical hardness approach, Tribol. Lett., 6 (1999) 1-8.
  • [22] S. Corezzi, D, Fioretto, R. Casalini and P.A. Rolla, Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a rationale based on configurational entropy, J. Non-Cryst. Solids, 307-310 (2002) 281-287.
  • [23] M. Aktary, M.T. DcDermott and G.A. McAlpine, Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time, Tribol. Lett., 12 (2002) 155-161.
  • [24] M.J. Mathewson, C.R. Kurkjian and S.T. Gulati, J. Am. Ceram. Soc., 69 (1986) 815.
  • [25] T. Klug and R. Bruckner, Preparation of C-fibre borosilicate composities: influence of the fibre on mechanical properties, J. Mater. Sci., 29 (1994) 4013-4021.
  • [26] E.C. Onyiriuka, Zinc phosphate glass surfaces studied by XPS, J. Non-Cryst. Solids, 163 (1993) 268-273.
  • [27] Z. Pawlak, Tribochemistry of Lubricating Oils, Elsevier, Amsterdam, 2003.
  • [28] M.A. Nicholls, T. Do, P.R. Norton, M. Kasrai and G.M. Bancroft, Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates, Tribol. Int., 38 (2005) 15-39.
  • [29] M. Belin, J.M. Martin and J.L. Mansot, Friction –induced amorphization with ZDDP, Tribol. Trans., 32 (1989) 410-413.
  • [30] N.J. Mosey, M.H. Muser and T.K. Wo, Molecular mechanism for the functionality of lubricant additives, Science, 307 (2005) 1612-1615.
  • [31] K.L. Johnson, Contact Mechanics, Cambridge University, New York, 1985.
  • [32] J. Tuma, Handbook of Physical Calculations, McGraw-Hill, New York, 1983.
  • [33] O.L. Warren, J.F. Graham, P.R. Norton, J.E. Houston and T.A. Michalske, Nanomechanical properties of films derived from zinc dialkyldithiophosphate, Tribol. Lett., 4 (1998) 189-198.
  • [34] J.F. Graham, C, McCaugue and P.R. Norton, Evaluation of local mechanical properties in depth in MoDTC/ZDDP and ZDDP tribochemical reacted films by using nanoindentation, Tribol. Lett., 4 (1999) 149-157.
  • [35] K. Kubo, M. Kibukawa and Y. Skimakawa, IMECHE, C 68/85 (1985) 121.
  • [36] M. Kano, Y. Yasuda and J.Ye, in: Proc. 2nd World Tribol. Congress, Vienna 2001, (ATS, 2001) 3412.
  • [37] M. Kasrai, J.N. Cutler, K. Gore, G.M. Bancroft and K.H. Tan, The chemistry of antiwear films generated by the combination of ZDDP and MoDTC examined by X-ray absorption spectroscopy, Tribol. Trans., 41 (1998) 69-77.
  • [38] J. M. Martin. C. Grossiord, Th. Le Mongne and J. Igarashi, Transfer films and friction under boundary lubrication, Wear, 245 (2000) 107-115.
  • [39] J. Ye, M. Kano and Y.Yasuda, Evaluation of local mechanical properties in depth in MoDTC/ZDDP and ZDDP tribochemical reacted films using nanoindentation, Tribol. Lett., 13 (2002) 41-47.
  • [40] J.M. Martin, C. Grossiord, T.L. Mogne, S. Bec and A. Toneck, The two-layer structure of Zndtp tribofilms Part I: AES, XPS and XANES analyses, Tribol. Int., 34 (2001) 523-530.
  • [41] M.A. Nicholls, P.R. Norton, G.M. Bancroft, K. Fyfe and M. Kasrai, X-ray absorption spectroscopy of tribofilms produced from zinc dialkyl dithiophosphates on Al-Si alloys, Wear, 257 (2004) 311.
  • [42] M.M. Robersts, J.R. Wienhoff, K. Grant, D.J. Lacks, Structural transformations in silica glass under high pressure, , J. Non-Cryst. Solids, 281 (2001) 205-212.
  • [43] M.A. Nicholls, P.R. Norton, G.M. Bancroft, M. Kasrai, G. De Stasio and L.M. Wiese, Spatially resolved nanoscale chemical and mechanical characterization of ZDDP antiwear films on aluminum–silicon alloys under cylinder/bore wear conditions, Tribol. Lett., 18 (2005) 261-278.
  • [44] M.A. Nicholls, T. Do, P.R. Norton, G.M. Bancroft, M. Kasrai, T.W. Capehart, T.T. Cheng and T. Perry, Chemical and mechanical properties of ZDDP antiwear films on steel and thermal spray coatings studied by XANES spectroscopy and nanoindentation techniques Trib. Lett., 15 (2003) 241-248.
  • [45] M.A. Nicholls, P.R. Norton, G.M. Bancroft, M. Kasrai, T. Do, B.H. Frazer and G. DeStasio, Nanometer scale chemomechanical characterization of antiwear films, Tribol. Lett., 15 (2003) 205-216.
  • [46] S. Bec, A. Tonck, J.M. Georges, R.C. Coy, J.C. Bell and G.W. Roper, Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films, Proceedings of the Royal Society of London A 455 (1999) 4181-4203.
  • [47] A. Molina, Isolation and chemical characterization of a zinc dialkyldithiophosphate-derived antiwear agent, ASLE Trans., 30 (1987) 479-485.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d92b21-33be-492c-827c-3f40d3e7a483
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.