PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interfacial Structure of Polytrimethylene Terephthalate/Polyethylene Terephthalate Bicomponent Filament

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interfacial structure and binding forces of polytrimethylene terephthalate/polyethylene terephthalate filament were investigated through the methods of Carbon-13 nuclear magnetic resonance (13C-NMR), differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and optical microscopy. When two molten polymers met during the spinning process, an interface layer between the PTT and PET components formed and played an important role in binding the two components together. When the blending time was sufficient, an ester-interchange reaction took place with the generation of the copolymer. The PET recrystallisation was observed in the DSC curve under the influence of entangled PTT molecular chains. The morphology of the cross-section and side view proved that the linear boundary line was short and weaker in binding without a chemical bond and molecular diffusion. Side-by-side bi-component fiber and split-type fiber was able to be controllably spun by adjusting the spinning parameters.
Słowa kluczowe
Rocznik
Strony
71--76
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Quanzhou Normal University, College of Textiles and Apparel, Quanzhou, Fujian 362000, People’s Republic of China
autor
  • Donghua University, Ministry of Education, Key Laboratory of Textile Science & Technology, Shanghai 201620, People’s Republic of China
autor
  • Quanzhou Normal University, College of Textiles and Apparel, Quanzhou, Fujian 362000, People’s Republic of China
autor
  • Donghua University, Ministry of Education, Key Laboratory of Textile Science & Technology, Shanghai 201620, People’s Republic of China
autor
  • Quanzhou Normal University, College of Textiles and Apparel, Quanzhou, Fujian 362000, People’s Republic of China
  • Quanzhou Normal University, College of Textiles and Apparel, Quanzhou, Fujian 362000, People’s Republic of China
Bibliografia
  • 1. Rwei SP, Lin YT, Su YY. Study of Self-Crimp Polyester Fibers. Polymer Engineering and Science 2005; 45(6), 838-845.
  • 2. Jeffries R. Bi-Component Fiber. Merrow Publishing Co. Ltd, Manchester, 1971.
  • 3. Kevin FM, Doros NT. Interfacial Structure and Dynamics of Macromolecular Liquids: A Monte Carlo Simulation Approach. Macromolecules 1989; 22(7): 3143-3152.
  • 4. Yang ZL, Wang FM. Dyeing and Finishing Performance of Different PTT/PET Bi-Component Filament Fabrics. Indian Journal of Fiber & Textile Research 2016; 41(4), 422-417.
  • 5. Yang ZL, Xu BG, Wang FM. Key Factors Affecting Binding Tightness Between Two Components Of PTT/PET Side-By-Side Filaments. Industria Textila 2016; 67(4): 226-232.
  • 6. Chuah HH. Orientation and Structure Development in Poly (Trimethylene Terephthalate) Tensile Drawing. Macromolecules 2001; 34(20): 6985-6993.
  • 7. Drozdzynska A, Leja K, Czaczyk K. Biotechnological Production Of 1,3-Propanediol from Crude Glycerol. Biotechnologia 2011; 92(1): 92-100.
  • 8. Deckwer WD. Microbial Conversion of Glycerol to 1,3-Propanediol: Recent Progress. FEMS Microbiology Reviews 1996; 16(2-3): 143-149.
  • 9. Liu XS, Jiao SY, Wang FM. Configuring the Spinning Technology of PTT/PET Bicomponent Filaments According to Fabric Elasticity. Textile Research Journal 2013; 83(5): 487-498.
  • 10. Oh TH, Han SS, Lyoo WS, Jeon HY. Molecular Structures and Physical Properties of Heat-Drawn Conjugates Fibers. Polymer Engineering and Science 2014; 51(2): 232-236.
  • 11. Gu F, Wang FM. Prediction Method of Elastic Elongation of PTT/PET Self-Crimping Fibers. Journal of Donghua University (Natural Science). 2001; 37(3): 262-266.
  • 12. Luo J, Wang FM, Xu BG. Factors Affecting Crimp Configuration of PTT/PET Bicomponent Filaments. Textile Research Journal 2011; 81(5): 538-544.
  • 13. Chen SH, Wang SY. Latent Crimp Behavior of PET/PTT Elastomultieater and a Concise Interpretation. Journal of Macromolecular Science B-Physics 2011; 50(7): 1447-1459.
  • 14. Xiao CX, Li WG, Huang XA. Research on the Compatibility of PTT/PET Blends. Synthesis Fiber 2003; 32(6): 22-25.
  • 15. Liang H, Wu W, Qian Q, Liu M. Melting Crystallization of PET/PTT Blends. Polymer Material Science & Engineering 2007; 23(1): 153-156.
  • 16. Son TW, Kim KI, Kim NH. Thermal Properties of Poly (Trimethylene Terephthalate)/Poly(Ethylene Terephthalate) Melt Blends. Fiber and Polymer 2003; 4(1): 20-26.
  • 17. Shyr TW, Lo CM, Ye SR. Sequence Distribution and Crystal Structure of Poly(Ethylene/Trimethylene Terephthalate) Copolyesters. Polymer 2005; 46(14): 5284-5298.
  • 18. Chiu FC, Huang KH, Yang JC. Miscibility and Thermal Properties of Melt-Mixed Poly(Tremethylene Terephthalate)/Amorphous Copolyester Blends. Journal of Polymer Science: Part B: Polymer Physics 2003; 41(19): 2264-2274.
  • 19. Pan JJ, Wang YF, Li BH, Run MT. Phase Morphology, Mechanical and Thermal Properties of Poly(Trimethylene Terephthalate) and Poly(Ethylene Terephthalate) Blends. Applied Mechanics and Materials 2016; 835: 277-283.
  • 20. Cui J, Wang CS, Wang HP, Chen Y, Zhang YM. Sequence Distribution and Structure of PTT/PET Copolyesters. Synth Fiber. 2006; 35(9): 1-5.
  • 21. Li GJ, Xing DG, Li W, Lu KX, Chen YM, Huang NX, Zhou EL. Studies on the morphology and crystallization behawior of PTT/PET blend system. Acta Polymerica Sinica. 2005; 5: 736-739.
  • 22. Arasteh R, Naderi A, Kaptan N, Maleknia L. Effects of fiber spinning on the morphology, rheology, thermal, and mechanical properties of poly(trimethylene terephthalate)/poly(ethylene terephthalate) blends. Advances in Polymer Technology 2015; 33, S1.
  • 23. Leal AA, Neururer AO, Bian A, Gooneie A, Rupper P, Masania K, Dransfeld C, Hufenus R. Interfacial Interactions In Bicomponent Polymer Fibers. Polymer 2018; 142: 375-386.
  • 24. Kikutani T, Radhakrishnan J, Arikawa S, Takaku A, Okui N, Jin X, Niwa F, Kudo Y. High-Speed Melt Spinning of Bicomponent Fibers: Mechanism of Fiber Structure Development in Poly(Ethylene Terephthalate)/Polypropylene System. Journal Of Applied Polymer Science 1996; 62(11): 1913-1924.
  • 25. Hufenus R, Yan Y, Dauner M, Yan D, Kikutani T. Bicomponent fibers in: Jinlian Hu (Ed.), Handbook of Fibrous Materials, Wiley-VCH Publishing Ltd., 2017.
  • 26. Jablonski EL. Interdiffusion Phenomena at Partially Miscible Polymer Interfaces, Iowa State University, 2002.
  • 27. Spruiell JE, White JL. Structure Development During Polymer Processing-Studies of Melt Spinning of Polyethylene and Polypropylene Fibers. Polymer Engineering Science 1975; 15(9): 660-667.
  • 28. Southern JH, Marin DH, Baird DG. Improved Shear-Core Adhesion in Biconstituent Fiber via Interface Mixing. Textile Research Journa 1980; 50(7): 411-416.
  • 29. Ide F, Hasegawa A. Studies on Polymer Blend of Nylon-6 and Polypropylene or Nylon-6 and Polystyrene Using Reaction of Polymer. Journal of Applied Polymer Science 1974; 18(4): 963-974.
  • 30. Yang XG. Interface of Composite Material. Chemical Industry Press, Beijing; 2010.
  • 31. Wu PX, Zhang LC. Polymer Blending Modification. China Light Industry Press, Beijing, 1994.
  • 32. Chen XH, Peng SX. Principle and Technology of Polymer Blending. Chemical Industry Press, Beijing, 2011.
  • 33. Smith WA, Barlow JW, Paul DR. Chemistry of Miscible Polycarbonate Copolyester Blends. Journal of Applied Polymer Science 1981; 26(12): 4233-4265.
  • 34. Antxon MI, Sebastian MG. Chemical Structure and Microstructure of Poly(Alkylene Terephthalate)S, their Copolyesters and their Blends as Studied by NMR. Macromolecular Chemistry and Physics 2014; 215(22): 2138-2160.
  • 35. Akitt JW, Mann BE. NMR and Chemistry. Cheltenham, UK: Stanley Thornes, 2000.
  • 36. Chuah HH. Crystallization kinetics of poly(trimethylene terephthalate). Polymer Engineering and Science 2001; 41(2): 308-313.
  • 37. Chen GK, Gu LX. Studies on the Crystallization Properties and Crystallization Kinetics of Polytrimethylene Terephthalate. Polymer Materials Science and Engineering 2001; 17(1), 141-145.
  • 38. Oh TH, Han SS, Lyoo WS, Jeon HY. Molecular Structures and Physical Properties of Heat-Drawn Conjugates Fibers. Polymer Engineering and Science 2014; 51(2): 232-236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d90ebf-d934-4ab2-9382-4c64c41b4109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.