PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of polypropylene membranes by ion implantation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of ion implantation on the structure and properties of polymers is a very complex issue. Many physical and chemical processes taking place during ion bombardment must be taken into consideration. The complexity of the process may exert both positive and negative influence on the structure of the material. The goal of this paper is to investigate the influence of H+, He+ and Ar+ ion implantation on the properties of polypropylene membranes used in filtration processes and in consequence on fouling phenomena. It has appeared that the ion bombardment caused the chemical modification of membranes which has led to decrease of hydrophobicity. The increase of protein adsorption on membrane surface has also been observed.
Rocznik
Strony
331--339
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Arunima S., Bijay T.P., Mahendra K., Vinod S K., 2009. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci., 145, 1–22. DOI: 10.1016/j.cis.2008.07.004.
  • 2. Basri H., Ismail A.F., Aziz M. 2011, Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal. Membr. Water Treat., 2, 25-37. DOI: 10.12989/mwt.2011.2.1.025.
  • 3. Chang D.J., Hsu F.C., Hwang S.J., 1995. Steady-state permeate flux of cross-flow microfiltration. J. Membr. Sci., 98, 97-106. DOI: 10.1590/S0104-66322013000100019.
  • 4. Changsheng Z., Jimin X., Fen R., Shudong S., 2013. Modification of polyethersulfone membranes – A review of methods. Prog. Mater. Sci., 58, 76–150. DOI: 10.1016/j.pmatsci.2012.07.002.
  • 5. Conrad J.R., Radtke J.L., Dodd R.A., Worzala F.J., Tran N.C., 1987. Plasma source ion implantation technique for surface modification of materials. J. Appl. Phys., 62, 4591-4596. DOI: 10.1063/1.339055.
  • 6. Dworecki K., Drabik M., Hesegawa T., Wąsik S., 2004. Modification of polymer membranes by ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B, 225, 483–488. DOI: 10.1016/S0168-583X(01)00779-0.
  • 7. Gac J.M., Bojarska M., Stępniewska I., Piątkiewicz W., Gradoń L., 2015. Permeability of pH-sensitive membranes grafted by Fenton-type reaction: An experimental and modeling study. Membr. Water Treat., 6, 411-422. DOI: 10.12989/mwt.2015.6.5.411.
  • 8. Garcia J.A., Rodriguez R.J., 2011. Ion implantation techniques for non-electronic applications. Vacuum, 85, 1125-1129. DOI: 10.1016/j.vacuum.2010.12.024.
  • 9. Goyal P.K., Kumar V., Gupta R., Mahendia S., Khokhar A., Kumar S., 2012. Modification of polycarbonate surface by Ar+ ion implantation for various opto-electronic applications. Vacuum, 86, 1087-1091. DOI: 10.1016/j.vacuum.2011.10.007.
  • 10. He D., Susanto H., Ulbricht M., 2009. Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Progress Polymer Sci., 34, 62-98. DOI: 10.1016/j.progpolymsci.2008.08.004.
  • 11. Jonsson A., Jonsson B., 1991. The influence of nonionic and ionic surfactants on hydrophobic and ultrafiltration membranes. J. Membrane Sci., 56, 49-76. DOI: 10.1016/0376-7388(91)85015-W.
  • 12. Kim M., Saito K., Forusaki S., 1991. Water flux and protein adsorption of a hollow fiber modified with hydroxyl groups. J. Membrane Sci., 56, 289-302. DOI: 10.1016/S0376-7388(00)83039-2.
  • 13. Kondyurin A, Bilek M., 2008. Ion beam treatment of polymers. Elsevier, UK.
  • 14. Ma H., Davis R.H., Bowman C.N., 2000. A novel sequential photoinduced living graft polymerization. Macromolecules, 33, 331–335. DOI: 10.1021/ma990821s.
  • 15. Manso M., Valsesia A., Lejeune M., Gilliland D., Ceccone G., Rossi F., 2005. Tailoring surface properties of biomedical polymers by implantation of Ar and He ions. Acta Biomater., 1, 431-440. DOI: 10.1016/j.actbio.2005.03.003.
  • 16. Nenadović M., Potočnik J., Ristić M., Štrbac S., Rakočević Z., 2012. Surface modification of polyethylene by Ag+ and Au+ ion implantation observed by phase imaging atomic force microscopy. Surf. Coat. Technol., 206, 4242-4248. DOI: 10.1016/j.surfcoat.2012.04.032.
  • 17. Osada Y., Nakagawa T., 1992. Membrane Science and Technology. Marcel Dekker, Inc., New York.
  • 18. Pearton S.J., 1991. Ion implantation doping and isolation of III–V semiconductors. Nucl. Instrum. Methods Phys. Res., Sect. B, 59, 970-977. DOI: 10.1016/0168-583X(91)95744-X.
  • 19. Pieczyńska D., Ostaszewska U., Bieliński D.M., Jagielski J., 2011. Modification of polymers with the application of ion beam bombardment. Part I. History, recent developments and perspectives for development. Polimery, 56, 439-51.
  • 20. Popok V.N., 2012. Ion implantation of polymers: Formation of nanoparticulate materials. Rev. Adv. Mater. Sci., 30, 1-26.
  • 21. Quasirani T.M., Samhaber W.M., 2011. Impact of gas bubbling and backflushing on fouling control and membrane cleaning. Desalination, 266, 154-161. DOI: 10.1016/j.desal.2010.08.019.
  • 22. Rabe M., Verdes D., Seeger S., 2009. Surface-induced spreading phenomenon of protein clusters. Soft Matter., 5, 1039-1047. DOI: 10.1039/B814053G.
  • 23. Rabe M., Verdes D., Seeger S., 2011. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci., 162, 87–106. DOI: 10.1016/j.cis.2010.12.007.
  • 24. Ramírez P., Mafé S., Alcaraz A., Cervera J., 2003. Modeling of pH-switchable ion transport and selectivity in nanopore membranes with fixed charges. J. Phys. Chem. B, 107, 13178–13187. DOI: 10.1021/jp035778w.
  • 25. Resta, V., Quarta G., Farella I., Maruccio L., Cola A., Calcagnile L., 2014. Comparative study of metal and nonmetal ion implantation in polymers: Optical and electrical properties. Nucl. Instrum. Methods Phys. Res., Sect. B, 331, 168–71. DOI: 10.1016/j.nimb.2013.11.038.
  • 26. Seunghee H., Yeonhee L., Haidong K., Gon-ho K., Junghye L., Jung-Hyeon Y., Gunwoo K., 1997. Polymer surface modification by plasma source ion implantation. Surf. Coat. Technol., 93, 261-4. DOI: 10.1016/S0257-8972(97)00057-1.
  • 27. Singh P., Kumar S., Prasad R., Kumar R., 2014. Study of physical and chemical modifications induced by 50 MeV Li3+ ion beam in polymers. Radiat. Phys. Chem., 94, 54-57. DOI: 10.1016/j.radphyschem.2013.07.008.
  • 28. Stengaard F.F., 1988. Characteristics and performance of new types of ultrafiltration membranes with chemically modified surfaces. Desalination, 70, 207-224. DOI:10.1016/0011-9164(88)85055-0.
  • 29. Sviridov D.V., 2003. Ion implantation in polymers: Chemical aspects. Chemical problems of the development of new materials and technologies, Collection of papers, 88-106.
  • 30. Turos A., Jagielski J., Piątkowska A., Bieliński D., Ślusarski L., Madi N. K., 2003. Ion beam modification of surface properties of polyethylene. Vacuum, 70, 201-206. DOI: 10.1016/S0042-207X(02)00643-7.
  • 31. Ulbricht M., 2006. Advanced functional polymer membranes. Polymer, 47, 2217–2262. DOI: 10.1016/j.polymer.2006.01.084.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d57eb7-98ec-42a1-b9d9-f15260996b66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.