PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Catalytic pyrolysis of metal free PCBs with ZSM-5 and Ca(OH)2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
Presence of heavier molecules and toxic brominated compounds in pyrolysis products of printed circuit boards (PCB) make their use difficult. In the present work to overcome this problem PCBs were pyrolyzed in presence of catalysts such as ZSM-5 and Ca(OH)2 to study their effect on pyrolysis products. The comparison of non-catalytic pyrolysis of PCB was done with oil and gas compositions produced by both techniques. Pyrolysis experiments were done at a lab scale set-up. However, the increased concentrations of ZSM-5 were found to increase char and gases were found to be rich in CH4 and O2. The composition of oils was mainly composed of phenols, phenol derivatives and aromatic compounds, which increased with pyrolysis with ZSM-5 and Ca(OH)2. Ca(OH)2 was found effective in removing brominated compounds from oil and no halogens were observed in oil. Char produced during pyrolysis was mesoporous in nature and composed of some fractions of metals and glass fibers.
Słowa kluczowe
Rocznik
Strony
171--–182
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, Bharuch-393135, Gujarat, India
  • Gujarat Technological University, Chandkheda, Ahmedabad-382424 Gujarat, India
autor
  • Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, Bharuch-393135, Gujarat, India
  • Gujarat Technological University, Chandkheda, Ahmedabad-382424 Gujarat, India
autor
  • Chemical Engineering Department, Shroff S. R. Rotary Institute of Chemical Technology, Bharuch-393135, Gujarat, India
  • Gujarat Technological University, Chandkheda, Ahmedabad-382424 Gujarat, India
Bibliografia
  • 1. Alenezi R.A., Al-Fadhli F.M., 2018. Thermal degradation kinetics of waste printed circuit boards. Chem. Eng. Res. Des., 130, 87–94. DOI: 10.1016/j.cherd.2017.12.005.
  • 2. Areeprasert C., Khaobang C., 2018. Pyrolysis and catalytic reforming of ABS/PC and PCB using biochar and e-waste char as alternative green catalysts for oil and metal recovery. Fuel Process. Technol, 182, 26–36. DOI: 10.1016/j.fuproc.2018.10.006.
  • 3. Awasthi A.K., Zeng X., Li J., 2016. Relationship between e-waste recycling and human health risk in India: a critical review. Environ. Sci. Pollut. Res., 23, 11509–11532. DOI: 10.1007/s11356-016-6085-7.
  • 4. Barontini F., Marsanich K., Petarca L., Cozzani V., 2005. Thermal degradation and decomposition products of electronic boards containing BFRs. Ind. Eng. Chem. Res., 44, 4186–4199. DOI: 10.1021/ie048766l.
  • 5. de Marco I., Caballero B.M., Chomôn M.J., Laresgoiti M.F., Torres A., Fernández G., Arnaiz S., 2008. Pyrolysis of electrical and electronic wastes. J. Anal. Appl. Pyrolysis, 82, 179–183. DOI: 10.1016/j.jaap.2008.03.011.
  • 6. Duan H., Li J., Liu Y., Yamazaki N., Jiang W., 2012. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environ. Pollut., 161, 185–191. DOI: 10.1016/j.envpol.2011.10.033.
  • 7. Evangelopoulos P., Kantarelis E., Yang W., 2015. Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py-GC/MS). J. Anal. Appl. Pyrolysis, 115, 337–343. DOI: 10.1016/j.jaap.2015.08.012.
  • 8. Gao R., Liu Y., Xu Z., 2018. Synthesis of oil-based resin using pyrolysis oil produced by debromination pyrolysis of waste printed circuit boards. J. Cleaner Prod., 203, 645–654. DOI: 10.1016/j.jclepro.2018.08.228.
  • 9. Gao R., Zhan L., Guo J., Xu Z., 2020. Research of the thermal decomposition mechanism and pyrolysis pathways from macromonomer to small molecule of waste printed circuit board. J. Hazard. Mater., 383, 121234. DOI: 10.1016/j.jhazmat.2019.121234.
  • 10. Hall W.J., Williams P.T., 2007. Separation and recovery of materials from scrap printed circuit boards. Resour. Conserv. Recycl., 51, 691–709. DOI: 10.1016/j.resconrec.2006.11.010.
  • 11. Hao J., Wang H., Chen S., Cai B., Ge L., Xia W., 2014. Pyrolysis characteristics of the mixture of printed circuit board scraps and coal powder. Waste Manage., 34, 1763–1769. DOI: 10.1016/j.wasman.2013.10.043.
  • 12. Hense P., Reh K., Franke M., Aigner J., Hornung A., Contin A., 2015. Pyrolysis of waste electrical and electronic equipment (WEEE) for recovering metals and energy: Previous achievements and current approaches. Environ. Eng. Manage. J., 14, 1637–1647. DOI: 10.30638/eemj.2015.175.
  • 13. Jie G., Ying-Shun L., Mai-Xi L., 2008. Product characterization of waste printed circuit board by pyrolysis. J. Anal. Appl. Pyrolysis, 83, 185–189. DOI: 10.1016/j.jaap.2008.08.007.
  • 14. Jung S.H., Kim S.J., Kim J.S., 2012. Thermal degradation of acrylonitrile-butadiene-styrene (ABS) containing flame retardants using a fluidized bed reactor: The effects of Ca-based additives on halogen removal. Fuel Process. Technol., 96, 265–270. DOI: 10.1016/j.fuproc.2011.12.039.
  • 15. Kim Y.M., Han T.U., Kim S., Jae J., Jeon J.K., Jung S.C., Park Y.K., 2017. Catalytic co-pyrolysis of epoxy-printed circuit board and plastics over HZSM-5 and HY. J. Cleaner Prod., 168, 366–374. DOI: 10.1016/j.jclepro.2017.08.224.
  • 16. Kim Y.M., Han T.U., Watanabe C., Teramae N., Park Y.K., Kim S., Hwang B., 2015. Analytical pyrolysis of waste paper laminated phenolic-printed circuit board (PLP-PCB). J. Anal. Appl. Pyrolysis, 115, 87–95. DOI: 10.1016/j.jaap.2015.06.013.
  • 17. Kim Y.M., Kim S., Lee J.Y., Park Y.K., 2013. Pyrolysis reaction pathways of waste epoxy-printed circuit board. Environ. Eng. Sci., 30, 706–712. DOI: 10.1089/ees.2013.0166.
  • 18. Li S.Y., Sun S.Y., Liu J.Y., Wu J.Q., Zeng J.J., 2014. Thermal debromination of waste printed circuit boards by iron-based catalyst. Adv. Mater. Res., 881–883, 589–593. DOI: 10.4028/www.scientific.net/AMR.881-883.589.
  • 19. Liu W., Xu J., Han J., Jiao F., Qin W., Li Z., 2019. Kinetic and mechanism studies on pyrolysis of printed circuit boards in the absence and presence of copper. ACS Sustainable Chem. Eng., 7, 1879–1889. DOI: 10.1021/ac- ssuschemeng.8b03382.
  • 20. Long L., Sun S., Zhong S., Dai W., Liu J., Song W., 2010. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. J. Hazard. Mater., 177, 626–632.
  • 21. DOI: 10.1016/j.jhazmat.2009.12.078. Moltó J., Egea S., Conesa J.A., Font R., 2011. Thermal decomposition of electronic wastes: Mobile phone case and other parts. Waste Manage., 31, 2546–2552. DOI: 10.1016/j.wasman.2011.07.028.
  • 22. Ng C.H., Salmiaton A., Hizam H., 2014. Catalytic pyrolysis and a pyrolysis kinetic study of shredded printed circuit board for fuel recovery. Bull. Chem. React. Eng. Catal., 9, 224–240. DOI: 10.9767/bcrec.9.3.7148.224-240.
  • 23. Ortuńo N., Conesa J.A., Moltó J., Font R., 2014. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal. Sci. Total Environ., 499, 27–35. DOI: 10.1016/j.scitotenv. 2014.08.039.
  • 24. Park Y.K., Han T.U., Jeong J., Kim Y.M., 2019. Debrominated high quality oil production by the two-step catalytic pyrolysis of phenolic printed circuit boards (PPCB) using natural clays and HY. J. Hazard. Mater., 367, 50–58. DOI: 10.1016/j.jhazmat.2018.12.040.
  • 25. Qin B., Lin M., Yao Z., Zhu J., Rua, J., Tang Y., Qiu R., 2020. A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: Rationing the mass of CaCO3 to capture Br-containing substances in the pyrolysis of nonmetallic particles of waste printed circuit boards. J. Hazard. Mater., 393, 122410. DOI: 10.1016/j.jhazmat.2020.122410.
  • 26. Quan C., Li A., Gao N., Dan Z., 2010. Characterization of products recycling from PCB waste pyrolysis. J. Anal. Appl. Pyrolysis, 89, 102–106. DOI: 10.1016/j.jaap.2010.06.002.
  • 27. Rajagopal R.R., Rajarao R., Cholake S.T., Sahajwalla V., 2017. Sustainable composite panels from non-metallic waste printed circuit boards and automotive plastics. J. Cleaner Prod., 144, 470–481. DOI: 10.1016/j.jclepro.2016.12.139.
  • 28. Shin S.R., Mai V.D., Lee D.S., 2019. Chemical recycling of used printed circuit board scraps: Recovery and utilization of organic products. Processes, 7, 13–16. DOI: 10.3390/pr7010022.
  • 29. Sun J., Wang W., Liu Z., Ma C., 2011a. Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing. Ind. Eng. Chem. Res., 50, 11763–11769. DOI: 10.1021/ie2013407.
  • 30. Sun J., Wang W., Liu Z., Ma C., 2011b. Study of the transference rules for bromine in waste printed circuit boards during microwave-induced pyrolysis. J. Air Waste Manage. Assoc., 61, 535–542. DOI: 10.3155/1047- 3289.61.5.535.
  • 31. Sun J., Wang W., Liu Z., Ma Q., Zhao C., Ma C., 2012. Kinetic study of the pyrolysis of waste printed circuit boards subject to conventional and microwave heating. Energies, 5, 3295–3306. DOI: 10.3390/en5093295.
  • 32. Wang Y., Sun S., Yang F., Li S., Wu J., Liu J., Zhong S., Zeng J., 2015. The effects of activated Al2O3 on the recycling of light oil from the catalytic pyrolysis of waste printed circuit boards. Process Saf. Environ. Prot., 98, 276–284. DOI: 10.1016/j.psep.2015.07.007.
  • 33. Williams P.T., 2010. Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste Biomass Valorization, 1, 107–120. DOI: 10.1007/s12649-009-9003-0.
  • 34. Xiong J., Yu S., Wu D., Lü X., Tang J., Wu,W., Yao Z., 2020. Pyrolysis treatment of nonmetal fraction of waste printed circuit boards: Focusing on the fate of bromine. Waste Manage. Res., 38, 1251–1258. DOI: 10.1177/0734242X19894621.
  • 35. Zhao C., Zhang X., Shi L., 2017. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR. Waste Manage., 61, 354–361. DOI: 10.1016/j.wasman.2016.12.019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d456f8-163f-4757-963b-31e023b10207
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.