PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topological Structure of Relation-based Generalized Rough Sets

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rough set theory is an important tool to deal with vagueness and granularity in information systems. Lower and upper approximation operators are two important basic concepts in the rough set theory. The classical Pawlak rough set approximations is based on equivalence relations and has been extended to relation-based generalized rough set approximations. In this paper, properties of relation-based generalized rough set approximations are examined, and topological properties of relation-based generalized rough set approximations presents. Necessary and sufficient conditions for the relation-based generalized upper (lower) approximation operators to be topological closure (interior) operators are proposed.
Wydawca
Rocznik
Strony
477--491
Opis fizyczny
Bibliogr. 53 poz., tab.
Twórcy
autor
  • College of Computer, Minnan Normal University, Zhang’zhou, Fu’jian 363000, China
autor
  • School of Mathematics and Statistics, Minnan Normal University, Zhang’zhou, Fu’jian 363000, China
autor
  • School of Mathematics and Statistics, Minnan Normal University, Zhang’zhou, Fu’jian 363000, China
Bibliografia
  • [1] Angiulli F, Pizzuti C. Outlier mining in large high-dimensional data sets. IEEE Transactions on Knowledge and Data Engineering, 2005; 17(2):203–215. doi:10.1109/TKDE.2005.31.
  • [2] Bonikowski Z, Bryniarski E, Wybraniec-Skardowska U. Extensions and intentions in the rough set theory. Information Sciences, 1998;107:149–167. doi:10.1016/S0020-0255(97)10046-9.
  • [3] Bryniarski E. A calculus of rough sets of the first order. Bulletin of the Polish Academy of Science Mathematics, 1989; 37(1-6):71–77. ISSN: 0237-7269.
  • [4] Cattaneo G. Abstract approximation spaces for rough theories. Rough Sets in Knowledge Discovery 1: Methodology and Applications, Springer, Berlin, 1998, 59–98. ISBN:978-3-7908-1883-3.
  • [5] Cĕch E. Topological Spaces. Wiley, New York, 1966.
  • [6] Dong G, Han J, Lam J, Pei J, Wang K, Zou W. Mining constrained gradients in large databases. IEEE Transactions on Knowledge and Data Engineering, 2004;16(8):922–938. doi:10.1109/TKDE.2004.28.
  • [7] Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, 1990;17(2-3):191–209. doi:10.1080/03081079008935107.
  • [8] Engelking R. General Topology. Heldermann Verlag, Berlin, 1989. ISBN:3-88538-006-4.
  • [9] Galton A. A generalized topological view of motion in discrete space. Theoretical Computer Science, 2003;305:111–134. doi:10.1016/S0304-3975(02)00701-6.
  • [10] Girish K P, John S J. Multiset topologies induced by multiset relations. Information Sciences, 2012;188:298–313. doi:10.1016/j.ins.2011.11.023.
  • [11] Grätzer G. Universal algebra. Springer-Verlag, New York, 2008. ISBN:9780387774862.
  • [12] Hall M A, Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 2003;15(6):1437–1447. doi:10.1109/TKDE.2003.1245283.
  • [13] Jensen R, Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1457–1471. doi:10.1109/TKDE.2004.96.
  • [14] Kondo M. On the structure of generalized rough sets. Information Sciences, 2006;176:589–600. doi:10.1016/j.ins.2005.01.001.
  • [15] Leung Y, Wu W-Z, Zhang W-X. Knowledge acquisition in incomplete information systems: a rough set approach. European Journal of Operational Research, 2006;168:164–180. doi:10.1016/j.ejor.2004.03.032.
  • [16] Li T R, Ruan D, Geert W, Song J, Xu Y. A rough sets based characteristic relation approach for dynamic attribute generalization in data mining. Knowledge-Based Systems, 2007;20:485–494. doi:10.1016/j.knosys.2007.01.002.
  • [17] Li Z W, Xie T S, Li Q G. Topological structure of generalized rough sets. Computers and Mathematics with Applications, 2012;63:1066–1071. doi.org/10.1016/j.camwa.2011.12.011.
  • [18] Lin T Y, Liu Q. Rough approximate operators: axiomatic rough set theory. In: Rough Sets, Fuzzy Sets and Knowledge Discovery (W. Ziarko, Ed.), Springer, Berlin, 1994, 256–260. doi:10.1007/978-1-4471-3238-7_31.
  • [19] Liu Q. Semantic analysis of rough logical formulas based on granular computing. In: Proceeding of 2006 IEEE International Conference on Granular Computing, Atlanta, Georgia, USA, 2006, 393–396. ISSN:1556-603X.
  • [20] McCord M C. Singular homology groups and homotopy groups of finite topological spaces. Duke Mathematical Journal, 1966;33:465–474. ISSN: 0012-7094.
  • [21] Mi J-S, Leung Y, Zhao H-Y, Feng T. Generalized fuzzy rough sets determined by a triangualr norm. Information Sciences, 2008;178:3203–3213. doi:10.1016/j.ins.2008.03.013.
  • [22] Naturman C A. Interior Algebras and Topology. Ph.D. thesis, University of Cape Town Department of Mathematics, 1991. Available from: http://hdl.handle.net/11427/18244.
  • [23] Pagliani P, Chakraborty M. A Geometry of Approximation. Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns. Vol 27, Springer, 2008. doi:10.1007/978-1-4020-8622-9.
  • [24] Pal S K, Mitra P. Case generation using rough sets with fuzzy representation. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(3):292–300. doi:10.1109/TKDE.2003.1262181.
  • [25] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982;11:341–356. doi:10.1007/BF01001956.
  • [26] Pei Z, Pei D W, Zheng L. Topology vs generalized rough sets. International Journal of Approximate Reasoning 2011;52:231–239. doi:10.1016/j.ijar.2010.07.010.
  • [27] Polkowski L. Mathematical morphology of rough sets. Bulletin of the Polish Academy of Sciences Mathematics, 1993;41(3):241–273. ISSN: 0239-7269.
  • [28] Polkowski L. Metric spaces of topological rough sets from countable knowledge bases. In: FCDS 1993: Foundations of Computing and Decision Sciences, 1993, 293–306.
  • [29] Polkowski L, Skowron A. (Eds.). Rough Sets and Current Trends in Computing. Vol. 1424, Springer, Berlin, 1998. doi:10.1007/3-540-69115-4.
  • [30] Polkowski L, Skowron A. (Eds.). Rough Sets in Knowledge Discovery. Vol. 1: Methodology and Applications. Physica-Verlag, Heidelberg, Berlin, 1998. doi:10.1007/978-3-7908-1883-3.
  • [31] Polkowski L, Skowron A. (Eds.). Rough Sets in Knowledge Discovery. Vol. 2: Applications, Case Studies and Software Systems. Physica-Verlag, Heidelberg, Berlin, 1998. doi:10.1007/978-3-7908-1883-3.
  • [32] Pomykała, J A. Approximation operations in approximation space. Bulletin of the Polish Academy of Science, 1987, 35(9-10):653–662. ISSN: 0239-7269.
  • [33] Qin K, Yang J, Pei Z. Generalized rough sets based on reflexive and transitive relations. Information Sciences, 2008;178:4138–4141. doi:10.1016/j.ins.2008.07.002.
  • [34] Qin K, Pei Z. On the topological properties of fuzzy rough sets. Fuzzy Sets and Systems, 2005;151(3):601–613. doi:10.1016/j.fss.2004.08.017.
  • [35] Skowron A. On the topology in information systems. Bulletin of the Polish Academy of Sciences Mathematics, 1988;36:477–480. ISSN: 0239-7269.
  • [36] Skowron A, Stepaniuk J. Tolerance approximation spaces. Fundamenta Informaticae, 1996;27:245–253. doi:10.3233/FI-1996-272311.
  • [37] Šlapal J. Relations and topologies. Czechkoslovak Mathematical Journal, 1993;43:41–150. ISSN: 0011-4642.
  • [38] Słowiński R, Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering, 2000;12(2):331–336. doi:10.1109/69.842271.
  • [39] Stong R E. Finite topological spaces. Transacions of the American Mathematical Society, 1966;123:325–340. doi:10.1090/S0002-9947-1966-0195042-2.
  • [40] Wiweger A. On topological rough sets. Bulletin of the Polish Academy of Sciences, 1989;37(1-6):89–93. ISSN: 0239-7269.
  • [41] Wu W-Z, Mi J-S. Some mathematical structures of generalized rough sets in infinite universes of discourse. Transactions on Rough Sets XIII, Lecture Notes in Computer Science 6499, pp. 175-206, 2011. doi:10.1007/978-3-642-18302-7_11.
  • [42] Wu W-Z, Zhou L. On intuitionistic fuzzy topologies based on intuitionistic fuzzy reflexive and transitive relations. Soft Computing, 2011;15(6):1183-1194. doi:10.1007/s00500-010-0576-0.
  • [43] Wu W-Z, Xu Y-H. On fuzzy topological structures of rough fuzzy sets. Transactions on Rough Sets XVI, Lecture Notes in Computer Science, 7736, pp. 125-143, 2013. doi:10.1007/978-3-642-36505-8_8.
  • [44] Wu W-Z, Mi J-S, Zhang W-X. Generalized fuzzy rough sets. Information Sciences, 2003;151:263–282. doi:10.1016/S0020-0255(02)00379-1.
  • [45] Yao Y Y. Constructive and algebraic methods of theory of rough sets. Information Sciences, 1998;109:21–47. doi:10.1016/S0020-0255(98)00012-7.
  • [46] Yao Y Y. Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences, 1998;111(1-4):239–259. doi:10.1016/S0020-0255(98)10006-3.
  • [47] Yao J, Liu W-N. The STP model for solving imprecise problems. In: Proceeding of 2006 IEEE International Conference on Granular Computing, Atlanta, Georgia, USA, 2006, 683–687. ISSN:1556-603X.
  • [48] Żakowski W. Approximations in the space (U;Π). Demonstratio Mathematica, 1983;16:761–769. ISSN: 0420-1213.
  • [49] Żakowski W. On a concept of rough sets. Demonstratio Mathematica, 1982;15(4):1129–1133. ISSN: 0420-1213.
  • [50] Zhang H, Ouyang Y, Wang Z. Note on “Generalized rough sets based on reflexive and transitive relations”. Information Sciences, 2009;179:471–473. doi:10.1016/j.ins.2008.10.009.
  • [51] Zhong N, Yao Y, Ohshima M. Peculiarity oriented multidatabase mining. IEEE Transactions on Knowledge and Data Engineering, 2003;15(4):952–960. doi:10.1109/TKDE.2003.1209011.
  • [52] Zhu W. Topological approaches to covering rough sets. Information Sciences, 2007;177:1499–1508. doi:10.1016/j.ins.2006.06.009.
  • [53] Zhu W, Wang F-Y. Reduction and axiomization of covering generalized rough sets. Information Sciences, 2003;152:217–230. doi:10.1016/S0020-0255(03)00056-2.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d3e4c1-87b0-454f-8f52-346fef24d04a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.