PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on fault ride-through capability of VSC-based HVDC transmission system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For voltage-source-converter based high-voltage-direct-current (VSC-HVDC)transmission systems, fault ride-through (FRT) capability is a very important grid requirement in order to enhance its operational availability under an alternating current (AC) gridfault condition. Voltage sags during a short-circuit fault in power transmission lines can leadto fluctuations in the direct current (DC) link voltage of converter systems, and may inducereversed power flow and even trip a VSC-HVDC transmission system. A practical methodis developed in this paper for investigating FRT capability of VSC-HVDC transmissionsystem characteristics during a voltage sag event using experimental results from Smart Grid Laboratory. Symmetrical and asymmetrical voltage sag events with different remaining voltages are applied to an AC grid that lasts with a variable duration. The experimental waveforms of the two converter systems are recorded and analyzed in order to evaluate theFRT capability of VSC-HVDC transmission systems.
Rocznik
Strony
37--51
Opis fizyczny
Bibliogr. 25 poz., rys., wz.
Twórcy
  • Faculty of Engineering and Technology, Quynhon University Vietnam
  • Faculty of Engineering and Technology, Quynhon University Vietnam
  • Faculty of Engineering and Technology, Quynhon University Vietnam
Bibliografia
  • [1] Hingorani N., Gyugyi L., Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, Willey (2000).
  • [2] Zhang X.P., Rehtanz C., Pal B., Flexible AC Transmission Systems: Modelling and Control, Springer-Verlag (2006).
  • [3] Yazdani A., Iravani R.,Voltage-sourced converters in power systems: Modeling, Control, and Applications, IEEE Press, Wiley (2010).
  • [4] Flourentzou N., Agelidis V.G., Demetriades G.D.,VSC-Based HVDC Power Transmission Systems: An Overview, IEEE Transactions on Power Electronics, vol. 24, pp. 592–602 (2009).
  • [5] Sessa S. D., Chiarelli A., Benato R., Availability Analysis of HVDC-VSC Systems: A Review, Energies,vol. 12, no. 14, pp. 1–22 (2019), DOI: 10.3390/en12142703.
  • [6] Alassi A., Bañales S., Ellabban O., Adam G., MacIver C.,HVDC Transmission: Technology Review, Market Trends and Future Outlook, Renewable and Sustainable Energy Reviews, vol. 112, pp. 530–554 (2019), DOI: 10.1016/j.rser.2019.04.062.
  • [7] Patil P. R., Bhole A. A., A review on enhancing fault ride-through capability of distributed generationin a microgrid, In Proceedings of 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), April 21–22, Vellore, India (2017), DOI: 10.1109/IPACT.2017.8245189.
  • [8] Yaramasu V., Wu B., Sen P. C., Kouro S., Narimani M., High-power wind energy conversion systems: State-of-the-art and emerging technologies, Proceedings of the IEEE, vol. 103, pp. 740–788 (2015).
  • [9] Feltes C., Wrede H., Koch F. W., Erlich I., Enhanced fault ride-through method for wind farms connected to the grid through VSC-based HVDC transmission, IEEE Transactions on Power Systems, vol. 24,pp. 1537–1546 (2009).
  • [10] Sang Y., Yang B., Shu H., An N., Zeng F., Yu T., Fault Ride-Through Capability Enhancement of Type-4 WECS in Offshore Wind Farm via Nonlinear Adaptive Control of VSC-HVDC, Processes, vol. 7, no. 540 (2019), DOI: 10.3390/pr7080540.
  • [11] Vrionis T. D., Koutiva X. I., Vovos N. A., Giannakopoulos G. B.,Control of an HVDC Link Connectinga Wind Farm to the Grid for Fault Ride-Through Enhancement, IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 2039–2047 (2007).
  • [12] Ramtharan G., Arulampalam A., Ekanayake J. B., Hughes F., Jenkins N., Fault ride through of fullyrated converter wind turbines with AC and DC transmission systems, IET Renewable Power Generation,vol. 3, iss. 4, pp. 426–438 (2009).
  • [13] Sun W., Torres-Olguina R. E., Anaya-Laraa O.,Investigation on Fault-ride through Methods for VSC-HVDC Connected Offshore Wind Farms, Energy Procedia, vol. 94, pp. 29–36 (2016).
  • [14] Haleem N. M., Rajapakse A. D., Gole A. M., Fernando I. T.,Investigation of Fault Ride-Through Capability of Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems, IEEE Transactions on Power Delivery, vol. 34, iss. 1, pp. 241–250 (2019).
  • [15] Li Y., Liu C., Tian X., Wang Z.,Study on fault ride-through control of islanded wind farm connected to VSC-HVDC grid based on the VSC converter AC-side bus forced short circuit, The Journal of Engineering, vol. 2019, no. 16, pp. 3325–3328 (2019).
  • [16] Moawwad A., El Moursi M. S., Xiao W.,Advanced fault ride-through management scheme for VSC-HVDC connecting offshore wind farms, IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4923–4934 (2016).
  • [17] Zhou Z., Chen Z., Wang X., Du D., Yang G., Wang Y., Hao L., AC fault ride through control strategyon inverter side of hybrid HVDC transmission systems, Journal of Modern Power Systems and Clean Energy, vol. 7, iss. 5, pp. 1129–1141 (2019).
  • [18] Feldman R., Farr E., Watson A. J., Clare J.C., Wheeler P. W., Trainer D. R., Crookes R. W., DC faultride-through capability and STATCOM operation of a HVDC hybrid voltage source converter, IET Generation, Transmission and Distribution, vol. 8, iss. 1, pp. 114–120 (2014).
  • [19] Oguma K., Akagi H., Low-Voltage-Ride-Through Performance of an HVDC Transmission System Using Two Modular Multilevel Double-Star Chopper-Cells Converters, Electrical Engineering in Japan, vol. 200, pp. 33–44 (2017), DOI: 0.1109/TPEL.2016.2615048.
  • [20] Yang B., Sang Y. Y., Shi K., Yao W., Jiang L., Yu T.,Design and real-time implementation of pertur-bation observer based sliding-mode control for VSC-HVDC systems, Control Engineering Practice,vol. 56, pp. 13–26 (2016).
  • [21] Yang B., Jiang L., Yu T., Shua H.C., Zhang C. K., Yao W., Wu Q. H.,Passive control design for multi-terminal VSC-HVDC systems via energy shaping, International Journal of Electrical Power and Energy Systems, vol. 98, pp. 496–508 (2018).
  • [22] Dumnic B., Popadic B., Milicevic D., Vukajlovic N., Delimar M., Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems, Energies, vol. 12, no. 7 (2019), DOI: 10.3390/en12071362.
  • [23] Latorre H. F., Ghandhari M., Soder L., Active and Reactive Power Control of VSC-HVDC, Electrical Power System Research, vol. 78, pp. 1756–1763 (2008).
  • [24] Li C., Li Y., Guo J., He P.,Research on emergency DC power support coordinated control for hybridmulti-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–21 (2020).
  • [25] Yang B., Yu T., Zhang X., Huang L., Shu H., Jiang L., Interactive teaching-learning optimizer forparameter tuning of VSC-HVDC systems with offshore wind farm integration, IET Generation, Transmission and Distribution, vol. 12, no. 3, pp. 678–687 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d3b519-af5c-47f1-b4a0-ae4e410cd1cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.