PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on a highly sensitive surface plasmon resonance sensor based on side-polished holey fiber with circle lattice

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the strong local electromagnetic field enhancement of surface plasmon polaritons (SPP), a highly sensitive surface plasmon resonance (SPR) sensor based on side-polished circle lattice holey fiber (HF) is proposed. The coupling resonance properties of the sensor are numerically studied, and the investigation findings indicate that our proposed sensor can realize single-resonance detection within a wide wavelength range of 1.189–1.921 μm for the refractive index (RI) of the analyte changes from 1.28 to 1.39. The highest wavelength sensitivity, amplitude sensitivity, and RI resolution are up to 21,400 nm/RIU, 363.4 RIU–1, and 4.67 × 10–6 RIU, respectively. Therefore, our proposed sensor will have broad application prospects in RI sensing, including water pollution monitoring, medical treatment, and food safety detection.
Słowa kluczowe
Czasopismo
Rocznik
Strony
317--326
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan 354300, China
Bibliografia
  • [1] RAMOLA A., MARWAHA A., SINGH S., Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing, Applied Physics A 127(9), 2021: 643. https://doi.org/10.1007/s00339-021-04785-2
  • [2] YASLI A., Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor, Plasmonics 16, 2021: 1605-1612. https://doi.org/10.1007/s11468-021-01425-6
  • [3] NATESAN A., GOVINDASAMY K.P., GOPAL T.R., DHASARATHAN V., ALY A.H., Tricore photonic crystal fibre based refractive index sensor for glucose detection, IET Optoelectronics 13(3), 2019: 118-123. https://doi.org/10.1049/iet-opt.2018.5079
  • [4] ZHAO Y., LEI M., LIU S.X., ZHAO Q., Smart hydrogel-based optical fiber SPR sensor for pH measurements, Sensors and Actuators B: Chemical 261, 2018: 226-232. https://doi.org/10.1016/j.snb.2018.01.120
  • [5] DASH J.N., JHA R., On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance, Plasmonics 10(5), 2015: 1123-1131. https://doi.org/10.1007/s11468-015-9912-7
  • [6] WANG Y., QIN F., YI Z., CHEN X., ZHOU Z., YANG H., LIAO X., TANG Y., YAO W., YI Y., Effect of slit width on surface plasmon resonance, Results in Physics 15, 2019: 102711. https://doi.org/10.1016/j.rinp.2019.102711
  • [7] YU P., CHEN X., YI Z, TANG Y., YANG H., ZHOU Z., DUAN T., CHENG S., ZHANG J., YI Y., A numerical research of wideband solar absorber based on refractory metal from visible to near infrared, Optical Materials 97, 2019: 109400. https://doi.org/10.1016/j.optmat.2019.109400
  • [8] SINGH P., SPR biosensors: Historical perspectives and current challenges, Sensors and Actuators B: Chemical 229, 2016: 110-130. https://doi.org/10.1016/j.snb.2016.01.118
  • [9] MASSON J.F., Portable and field-deployed surface plasmon resonance and plasmonic sensors, Analyst 145(11), 2020: 3776-3800. https://doi.org/10.1039/D0AN00316F
  • [10] TUBB A.J.C., PAYNE F.P., MILLINGTON R.B., LOWE, C.R., Single-mode optical fiber surface plasma wave chemical sensor, Sensors and Actuators B: Chemical 41(1-3), 1997: 71-79. https://doi.org/10.1016/S0925-4005(97)80279-1
  • [11] PENG W., BANERJI S., KIM Y.C., BOOKSH K.S., Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications, Optics Letters 30(22), 2005: 2988-2990. https://doi.org/10.1364/OL.30.002988
  • [12] ŠPAČKOVÁ B., HOMOLA J., Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating, Optics Express 17(25), 2009: 23254-23264. https://doi.org/10.1364/OE.17.023254
  • [13] SANTOS D.F., GUERREIRO A., BAPTISTA J.M., Surface plasmon resonance sensor based on D-type fiber with a gold wire, Optik 139, 2017: 244-249. https://doi.org/10.1016/j.ijleo.2017.03.035
  • [14] NAVARRETE M.C., DÍAZ-HERRERA N., GONZÁLEZ-CANO A., ESTEBAN Ó., Surface plasmon resonance in the visible region in sensors based on tapered optical fibers, Sensors and Actuators B: Chemical 190, 2014: 881-885. https://doi.org/10.1016/j.snb.2013.09.066
  • [15] GANDHI M.S.A., CHU S., SENTHILNATHAN K., BABU P.R., NAKKEERAN K., LI Q., Recent advances in plasmonic sensor-based fiber optic probes for biological applications, Applied Sciences 9(5), 2019: 949. https://doi.org/10.3390/app9050949
  • [16] ISLAM M.S., PAUL B.K., AHMED K., ASADUZZAMAN S., Rhombic core photonic crystal fiber for sensing applications: Modeling and analysis, Optik 157, 2018: 1357-1365. https://doi.org/10.1016/j.ijleo.2017.12.048
  • [17] KARIM M.S., HOSSIN S., ALAM M.R., SIDDIK M.A.B., AKTAR M.R., AHMED N., SHAKH M.A.N., Quad core gold coated photonic crystal fiber temperature sensor based on surface plasmon resonance, Sensing and Bio-Sensing Research 39, 2023: 100548. https://doi.org/10.1016/j.sbsr.2022.100548
  • [18] LIU C, SU W, LIU Q, LU X., WANG F., SUN T., CHU P.K., Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing, Optics Express 26(7), 2018: 9039-9049. https://doi.org/10.1364/OE.26.009039
  • [19] RIFAT A.A., MAHDIRAJI G.A., CHOW D.M., SHEE Y.G., AHMED R., ADIKAN F.R.M., Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core, Sensors 15(5), 2015: 11499-11510. https://doi.org/10.3390/s150511499
  • [20] DASH J.N., JHA R., SPR biosensor based on polymer PCF coated with conducting metal oxide, IEEE Photonics Technology Letters 26(6), 2014: 595-598. https://doi.org/10.1109/LPT.2014.2301153
  • [21] CHAKMA S., KHALEK M.A., PAUL B.K., AHMED K., HASAN M.R., BAHAR A.N., Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis, Sensing and Bio-Sensing Research 18, 2018: 7-12. https://doi.org/10.1016/j.sbsr.2018.02.003
  • [22] TONG K., WANG F., WANG M., DANG P., WANG Y., Three-core photonic crystal fiber surface plasmon resonance sensor, Optical Fiber Technology 46, 2018: 306-310. https://doi.org/10.1016/j.yofte.2018.11.014
  • [23] LI T, ZHU L, YANG X, LUO X., YU L., A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers, Sensors 20(3), 2020: 741. https://doi.org/10.3390/s20030741
  • [24] HAN H., HOU D., LUAN N., BAI Z., SONG L., LIU J., HU Y., Surface plasmon resonance sensor based
  • on dual-side polished microstructured optical fiber with dual-core, Sensors 20(14), 2020: 3911. https://doi.org/10.3390/s20143911
  • [25] ZHAO Q., LIU J., YANG H., LIU H., ZENG G., HUANG B., High birefringence D-shaped germanium-doped photonic crystal fiber sensor, Micromachines 13(6), 2022: 826. https://doi.org/10.3390/mi13060826
  • [26] WANG Y., JIANG G., YU Z., WANG Q., JIANG X., Trapezium-shaped groove photonic crystal fiber plasmon sensor for low refractive index detection, Sensing and Bio-Sensing Research 34, 2021: 100452. https://doi.org/10.1016/j.sbsr.2021.100452
  • [27] JI X., LUAN N., ZHANG W., QI Y., LUO M., LIU J., Side-opening grapefruit fiber-based SPR sensor for simultaneous measurement of refractive index and temperature, IEEE Photonics Journal 14(6), 2022: 6859006. https://doi.org/10.1109/JPHOT.2022.3219137
  • [28] LIU Q., SUN J., SUN Y., LIU W., WANG F., YANG L., LIU C., LIU Q., LI Q., REN Z., SUN T., CHU P.K., Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide, Applied Optics 58(25), 2019: 6848-6853. https://doi.org/10.1364/AO.58.006848
  • [29] CHU S., NAKKEERAN K., ABOBAKER A.M., APHALE S.S., BABU P.R., SENTHILNATHAN K., Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fibre biosensor for high-refractive-index liquid analytes, IEEE Journal of Selected Topics in Quantum Electronics 25(2), 2019:6900309. https://doi.org/10.1109/JSTQE.2018.2873481
  • [30] MANICKAM P., SENTHIL R., Numerical demonstration of photonic quasi-crystal fiber–surface plasmonic resonance urinary methanol sensor, Plasmonics 18, 2023: 511-519. https://doi.org/10.1007/s11468-022-01768-8
  • [31] HUANG T., Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength, Plasmonics 12, 2017: 583-588. https://doi.org/10.1007/s11468-016-0301-7
  • [32] SELLERI S., PETRÁČEK J., Modal analysis of rib waveguide through finite element and mode matching methods, Optical and Quantum Electronics 33, 2001: 373-386. https://doi.org/10.1023/ A:1010838716217
  • [33] CHEN N., CHANG M., ZHANG X., ZHOU J., LU X., ZHUANG S., Highly sensitive plasmonic sensor based on a dual-side polished photonic crystal fiber for component content sensing applications, Nanomaterials 9(11), 2019: 1587. https://doi.org/10.3390/nano9111587
  • [34] LUAN N, WANG R, LV W, YAO J., Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core, Optics Express 23(7), 2015: 8576-8582. https://doi.org/10.1364/OE.23.008576
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d36753-193e-499b-bdc9-826cd82a2f36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.