Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Composite materials are a constantly evolving group of engineering materials, which has significantly changed their current, and potential role as structural materials over the past decades. Composites offer greater strength, stiffness, and less deformation to structural designers than previously available engineering materials. Resin matrix composites are widely used in the transportation, marine, aerospace, energy, and even sports industries. The manufacturing stage has a profound influence on the quality of the final product. This paper presents the production of composite materials by gravity casting in silicone moulds, using an epoxy/polyester resin matrix reinforced with wood chips and shredded glass fiber reinforced composite from recycled wind turbine blades. Some of the fabricated samples were degassed in a reduced-pressure chamber. The mechanical properties of the produced material were then examined. It was noted that the silicone moulds did not affect the resin self-degassing due to the large surface area to weight ratio, and the remaining small air bubbles had a limited effect on the mechanical properties of the samples. The filler used also played a significant role. Composites filled with crushed GFRC showed better strength properties than composites filled with wood chips. The conducted research is aimed at selecting materials for further testing with a view to their use in the manufacture of next-generation wood-based composite structural materials.
Rocznik
Tom
Strony
art. no. e146618
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 street, 75-620 Koszalin, Poland
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 street, 75-620 Koszalin, Poland
autor
- Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17 street, 75-620 Koszalin, Poland
Bibliografia
- [1] IPCC 2022, Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, H.-O. Pörtner et al., Eds., Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022, p. 333., doi: 10.1017/9781009325844.
- [2] I. Piasecka, A. Tomporowski, J. Flizikowski, W. Kruszelnicka, R. Kasner, and A. Mroziński, “Life cycle analysis of ecological impacts of an offshore and a land-based wind power plant,” Appl. Sci., vol. 9, no. 2, p. 231, Jan. 2019, doi: 10.3390/app9020231.
- [3] Z. Jan, T. Rydzkowski, A. Burduk, K. Kędzia, and A. Falak, “Materiały i technologie XXI wieku”, XXII Międzynarodowa studencka sesja naukowa, Jul. 2021. (in Polish)
- [4] J.P. Jensen and K. Skelton, “Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy”, Renew. Sust. Energ. Rev., vol. 97, p. 165, 2018, doi: 10.1016/j.rser.2018.08.041.
- [5] A. Cooperman, A. Eberle, and E. Lantz, “Wind turbine blade material in the United States: Quantities, costs, and end-of-life options,” Resour. Conserv. Recycl., vol. 168, p. 105, May 2021, doi: 10.1016/j.resconrec.2021.105439.
- [6] J. Beauson and P. Brøndsted, “Wind Turbine Blades: An End of Life Perspective,” in MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology. Cham: Springer International Publishing, 2016, pp. 421–432, doi: 10.1007/978-3-319-39095-6_23.
- [7] D.S. Cousins, Y. Suzuki, R.E. Murray, J.R. Samaniuk, and A.P. Stebner, “Recycling glass fiber thermoplastic composites from wind turbine blades,” J. Cleaner Prod., vol. 209, pp. 12521263, Feb. 2019, doi: 10.1016/j.jclepro.2018.10.286.
- [8] L. Bank et al., “Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing,” Recycling, vol. 3, no. 1, p. 3, Jan. 2018, doi: 10.3390/recycling3010003.
- [9] M.K. Hagnell and M. Åkermo, “The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials,” J. Cleaner Prod., vol. 223, pp. 957–968, Jun. 2019, doi: 10.1016/j.jclepro.2019.03.156.
- [10] A. Tomporowski et al., “Comparison Analysis of Blade Life Cycles of Land-Based and Offshore Wind Power Plants,” Pol. Marit. Res., vol. 25, no. s1, pp. 225–233, May 2018, doi: 10.2478/pomr-2018-0046.
- [11] R. Regulski et al., “Automated test bench for research on electrostatic separation in plastic recycling application,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. 136719, Apr. 2021, doi: 10.24425/bpasts.2021.136719.
- [12] J. Flizikowski, W. Kruszelnicka, and M. Macko, “The Development of Efficient Contaminated Polymer Materials Shredding in Recycling Processes,” Polymers, vol. 13, no. 5, p. 713, Feb. 2021, doi: 10.3390/polym13050713.
- [13] M. Macko, K. Tyszczuk, G. Śmigielski, and A. Mroziński, “Utility of an unitary-shredding method to evaluate the conditions and selection of constructional features during grinding,” MATEC Web Conf., vol. 157, pp. 5–16, 2018, doi: 10.1051/matecconf/201815705016.
- [14] J. Czerniak, D. Ewald, M. Macko, G. Śmigielski, and K. Tyszczuk, “Approach to the Monitoring of Energy Consumption in Eco-grinder Based on ABC Optimization,” in Beyond Databases, Architectures and Structures. BDAS 2015. Communications in Computer and Information Science, vol. 521, May 2015, pp. 516–529, doi: 10.1007/978-3-319-18422-7_46.
- [15] S. Hoyer, L. Kroll, and D. Sykutera, “Technology comparison for the production of fine rubber powder from end of life tyres,” Procedia Manuf., vol. 43, pp. 193–200, 2020, doi: 10.1016/j.promfg.2020.02.135.
- [16] J. Flizikowski, I. Piasecka, W. Kruszelnicka, A. Tomporowski, and A. Mrozinski, “Destruction assessment of wind power plastics blade,” Polimery, vol. 63, no. 5, pp. 381–386, May 2018, doi: 10.14314/polimery.2018.5.7.
- [17] I. Piasecka, “Badanie i ocena cyklu życia zespołów elektrowni wiatrowych,” extended abstract of doctoral dissertation, Politechnika Poznańska, Poznań, 2014. (in Polish)
- [18] I. Piasecka, A. Tomporowski, J. Flizikowski, W. Kruszelnicka, R. Kasner, and A. Mroziński, “Life Cycle Analysis of Ecological Impacts of an Offshore and a Land-Based Wind Power Plant,” Appl. Sci., vol. 9, no. 2, p. 231, Jan. 2019, doi: 10.3390/app9020231.
- [19] N.C.W. Judd and W.W. Wright, “Voids and Their Effects on the Mechanical Properties of Composites – An Appraisal,” SAMPE J., vol. 14, no. 1, pp. 10–14, 1978.
- [20] J.-M. Tang, W.I. Lee, and G.S. Springer, “Effects of Cure Pressure on Resin Flow, Voids, and Mechanical Properties,” J. Compos. Mater., vol. 21, no. 5, pp. 421–440, May 1987, doi: 10.1177/002199838702100502.
- [21] J.R. Wood and M.G. Bader, “Void control for polymer-matrix composites (1): Theoretical and experimental methods for determining the growth and collapse of gas bubbles,” Compos. Manuf., vol. 5, no. 3, pp. 139–147, Sep. 1994, doi: 10.1016/0956-7143(94)90023-x.
- [22] Plastics – Determination of mechanical properties in static tension – Part 2: Test conditions for plastics intended for various moulding techniques, PN-EN ISO 527-2:2012.
- [23] Plastics – Determination of tensile properties – Part 3: Test conditions for foil and boards, PN-EN ISO 527-3:2019-01.
- [24] Plastics – Methods for determining the density of non-porous plastics – Part 1: Immersion, liquid pycnometer and titration methods, PN-EN ISO 1183-1:2019-05.
- [25] Plastics and hard rubber – Determination of press hardness using a hardness tester (Shore hardness), PN-EN ISO 868:2005.
- [26] Plastics – Charpy impact test – Part 1: Non-instrumental impact test, PN-EN ISO 179-1:2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d2bb95-b105-4332-a129-856989efb2fa