PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tyre-derived activated carbon – textural propertiesand modelling of adsorption equilibrium of n-hexane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is general agreement that primary pyrolysis products of end-of-life tyres should be valorised toimprove the economics of pyrolysis. In this work, tyre pyrolysis char (TPC) is produced in a pyrolysispilot plant designed and built at our home university. The produced TPC was upgraded to tyre-derivedactivated carbon (TDAC) by activation with CO2, and then characterised using stereological analysis(SA) and nitrogen adsorption at 77 K. SA showed that the grains of TPC and TDAC were quasi-spherical and slightly elongated with a 25% increase in the mean particle cross-section surface area forTDAC. The textural properties of TDAC demonstrated the BET and micropore surface areas of 259 and70 m2/g, respectively. Micropore volume and micropore surface area were 5.8 and 6.7 times higher forTDAC than TPC at2nm, respectively. Then-hexane adsorption was investigated using experimentsand modelling. Eight adsorption isotherms along with three error functions were tested to model theadsorption equilibrium. The optimum sets of isotherm parameters were chosen by comparing sum ofthe normalized errors. The analysis indicated that the Freundlich isotherm gave the best agreementwith the equilibrium experiments. In relation to different activated carbons, the adsorption capacityof TDAC forn-hexane is about 16.2 times higher than that of the worst reference material and 4.3times lower than that of the best reference material. In addition, stereological analysis showed thatactivation with CO2did not change the grain’s shape factors. However, a 25% increase in the meanparticle cross-section surface area for TDAC was observed.
Rocznik
Strony
25–--44
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,ul. Waryńskiego 1, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,ul. Waryńskiego 1, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering,ul. Waryńskiego 1, Warsaw, Poland
Bibliografia
  • 1. Abbasi S., Foroutan R., Esmaeili H., Esmaeilzadeh F., 2019. Preparation of activated carbon from worn tires for removal of Cu(II), Ni(II) and Co(II) ions from synthetic wastewater. Desalin. Water Treat., 141, 269–278. DOI: 10.5004/dwt.2019.23569.
  • 2. Acevedo B., Barriocanal C., Lupul I., Gryglewicz G., 2015. Properties and performance of mesoporous activated carbons from scrap tyres, bituminous wastes and coal. Fuel, 151, 83–90. DOI: 10.1016/j.fuel.2015.01.010.
  • 3. Acosta R., Nabarlatz D., Sanchez-Sanchez A., Jagiello J., Gadonneix P., Celzard A., Fierro V., 2018. Adsorption of bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng., 6, 823–833. DOI: 10.1016/j.jece.2018.01.002.
  • 4. Allen J.L., Gatz J.L., Eklund P.C., 1999. Applications for activated carbons from used tires: Butane working capacity. Carbon, 37, 1485–1489. DOI: 10.1016/S0008-6223(99)00011-1.
  • 5. Antoniou N., Stavropoulos G., Zabaniotou, 2014. Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system. Renew. Sustain. Energy Rev., 39, 1053–1073. DOI: 10.1016/j.rser.2014.07.143.
  • 6. Aranda A., Navarro M.V., Garcia T., Murillo R., Mastral A.M., 2007. Temperature swing adsorption of polycyclic aromatic hydrocarbons on activated carbons. Ind. Eng. Chem. Res., 46, 8193–8198. DOI: 10.1021/ie070849p.
  • 7. Aranovich G.L., Donohue M.D., 1995. A new approach to analysis of multilayer adsorption. J. Colloid Interface Sci., 173, 515–520. DOI: 10.1006/jcis.1995.1353.
  • 8. Charpenteau C., Seneviratne R., George A., Millan M., Dugwell D.R., Kandiyoti R., 2007. Screening of Low cost sorbents for arsenic and mercury capture in gasification systems. Energy Fuels, 21, 2746–2750. DOI: 10.1021/ef070026c.
  • 9. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off. J. Eur. Communities L 182, 0001–0019.
  • 10. Council Directive 91/156/EEC of 18 March 1991 amending Directive 75/442/EEC on waste. Off. J. Eur. Communities L 078, 32–37.
  • 11. Cuadrado-Collados C., Rojas-Mayorga C.K., Saavedra B., Martinez-Escandell M., Osiński J.M., Moghadam P.Z.,
  • 12. Fairen-Jimenez D., Silvestre-Albero J., 2019.Reverse hierarchy of alkane adsorption in Metal-Organic Frameworks (MOFs) revealed by immersion calorimetry. J. Phys. Chem.C, 123, 11699–11706. DOI: 10.1021/acs.jpcc.9b01381.
  • 13. Daraei H., Mittal A., 2017. Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater. Desalin. Water Treat., 90, 294–298. DOI: 10.5004/dwt.2017.21344.
  • 14. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. Off. J. Eur. Union L 143, 87–96.
  • 15. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Off. J. Eur. Union L 334, 17–119.
  • 16. Do D.D., Do H.D., 2002. Characterization of micro-mesoporous carbonaceous materials. Calculations of Adsorption isotherm of hydrocarbons. Langmuir, 18, 93–99. DOI: 10.1021/la010232r.
  • 17. Dubinin, M.M., Radushkevich, L.V., Zaverina, E.D., 1947. Sorption and structure of active carbons. Zhurnal Fizicheskoi Khimii, 21, 1351–1362.
  • 18. E.P.A. Clean Air Technology, 1999. Choosing an adsorption system for VOC: carbon, zeolite or polymers? CATC Tech. Bull., EPA-456/F-99-004.
  • 19. ETRMA, 2017. ELT Management figures 2014. Available at: https://www.etrma.org/library/elt-management-figures-2014/
  • 20. ETRMA, 2018. ELT Management figures 2016. Available at: https://www.etrma.org/library/elt-management-figures-2016/
  • 21. Foo K.Y., Hameed B.H., 2010. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 156, 2–10. DOI: 10.1016/j.cej.2009.09.013.
  • 22. Freundlich H., 1907. Uber die Adsorption in Losungen. Zeitschrift fur Phys. Chemie, 57U, 385–470. DOI: 10.1515/zpch-1907-5723.
  • 23. Gregorova E., Uhliřova T., Pabst W., Diblikova P., Sedlařova I., 2018. Microstructure characterization of mullite foam by image analysis, mercury porosimetry and X-ray computed microtomography. Ceram. Int., 44, 12315–12328. DOI: 10.1016/j.ceramint.2018.04.019.
  • 24. Hajizadeh Y., Onwudili. J.A., Williams P.T., 2011. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.Waste Manag., 31, 1194–1201. DOI: 10.1016/j.wasman. 2011.01.011.
  • 25. Helleur R., Popovic N., Ikura M., Stanciulescu M., Liu D., 2001. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. J. Anal. Appl. Pyrolysis, 58–59, 813–824. DOI: 10.1016/S0165- 2370(00)00207-2.
  • 26. Hernandez-Monje D., Giraldo L., Moreno-Pirajan J., 2018. Study of hexane adsorption on activated carbons with differences in their surface chemistry. Molecules, 23, 476. DOI: 10.3390/molecules23020476.
  • 27. Hofman M., Pietrzak R., 2011. Adsorbents obtained from waste tires for NO2 removal under dry conditions at room temperature. Chem. Eng. J., 170, 202–208. DOI: 10.1016/j.cej.2011.03.054.
  • 28. KaminskyW., Mennerich C., 2001. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrolysis, 58–59, 803–811. DOI: 10.1016/S0165-2370(00)00129-7.
  • 29. Kim D.J., Shim W.G., Moon H., 2001. Adsorption equilibrium of solvent vapours on activated carbons. Korean J. Chem. Eng., 18, 518–524. DOI: 10.1007/BF02698300.
  • 30. Kosuge K., Kubo S., Kikukawa N., Takemori M., 2007. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir, 23, 3095–3102. DOI: 10.1021/la062616t.
  • 31. Kotkowski T., Cherbański R., Molga E., 2018. Acetone adsorption on CO2-activated tyre pyrolysis char – Thermo- gravimetric analysis. Chem. Process Eng., 39, 233–246. DOI: 10.24425/122946.
  • 32. Lai M.-H., Chu R.Q., Huang H.-C., Shu S.-H., Chung T.-W., 2009. Equilibrium isotherms of volatile alkanes, alkenes, and ketones on activated carbon. J. Chem. Eng. Data, 54, 2208–2215. DOI: 10.1021/je800826d.
  • 33. Langmuir I., 1917. The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc., 39, 1848–1906. DOI: 10.1021/ja02254a006.
  • 34. Langmuir I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • 35. Lehmann C.M.B., Rostam-Abadi M., Rood M.J., Sun J., 1998. Reprocessing and reuse of waste tire rubber to solve air-quality related problems. Energy Fuels, 12, 1095–1099. DOI: 10.1021/ef9801120.
  • 36. Li S.-Q., Yao Q., Chi Y., Yan J.-H., Cen K.-F., 2004. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Ind. Eng. Chem. Res., 43, 5133–5145. DOI: 10.1021/ie030115m.
  • 37. Li S.-Q.Q., Yao Q.,Wen S.-E.E., Chi Y., Yan J.-H.H., 2005. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires. J. AirWaste Manage. Assoc., 55, 1315–1326. DOI: 10.1080/10473289. 2005.10464728.
  • 38. Lian F., Huang F., Chen W., Xing B., Zhu L., 2011. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environ. Pollut., 159, 850–857. DOI: 10.1016/j.envpol. 2011.01.002.
  • 39. Lin H.-Y., Yuan C.-S., Chen W.-C., Hung C.-H., 2006. Determination of the adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis. J. Air Waste Manage. Assoc., 56, 1550–1557. DOI: 10.1080/10473289.2006.10464561.
  • 40. Makrigianni V., Giannakas A., Bairamis F., Papadaki M., Konstaninou I., 2017. Adsorption of Cr(VI) from aqueous solutions by HNO3-purified and chemically activated pyrolytic tire char. J. Dispers. Sci. Technol., 38, 992–1002. DOI: 10.1080/01932691.2016.1216862.
  • 41. Manirajah K., Sukumaran S.V., Abdullah N., Razak H.A., Ainirazali N., 2019. Evaluation of low cost-activated carbon produced from waste tyres pyrolysis for removal of 2-chlorophenol. Bull. Chem. React. Eng. Catal., 14, 443–449. DOI: 10.9767/bcrec.14.2.3617.443-449.
  • 42. Micromeritics Instrument Corporation 2013–2014, 2014. 3FLEX Surface Characterization Analyzer – Operator Manual.
  • 43. Mui E.L.K., Ko D.C.K., McKay G., 2004. Production of active carbons from waste tyres – A review. Carbon, 42, 2789–2805. DOI: 10.1016/j.carbon.2004.06.023.
  • 44. Murillo R., Navarro M.V., Garcia T., Lopez J.M., Callen M.S., Aylon E., Mastral A.M., 2005. Production and application of activated carbons made from waste tire. Ind. Eng. Chem. Res., 44, 7228–7233. DOI: 10.1021/ie050506w.
  • 45. Porter J.F., McKay G., Choy K.H., 1999. The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci., 54, 5863–5885. DOI: 10.1016/S0009-2509(99)00178-5.
  • 46. Rouquerol J., Llewellyn P., Rouquerol F., 2007. Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal., 160, 49–56. DOI: 10.1016/S0167-2991(07)80008-5.
  • 47. Rouquerol J., Rouquerol F., Sing K.S.W., 1998. Absorption by powders and porous solids. Academic Press.
  • 48. Wejrzanowski T., Lewandowska M., Kurzydłowski K.J., 2010. Stereology of nano-materials. Image Anal. Stereol., 29, 1–12. DOI: 10.5566/ias.v29.p1-12.
  • 49. Wejrzanowski T., Spychalski W., Rożniatowski K., Kurzydłowski K., 2008. Image Based Analysis of complex microstructures of engineering materials. Int. J. Appl. Math. Comput. Sci., 18, 33–39. DOI: 10.2478/v10006-008-0003-1.
  • 50. Williams P.T., 2013. Pyrolysis of waste tyres: a review. Waste Manag., 33, 1714–28. DOI: 10.1016/j.wasman. 2013.05.003.
  • 51. Zhang P.,Wang L., 2010. Extended Langmuir equation for correlating multilayer adsorption equilibrium data. Sep. Purif. Technol., 70, 367–371. DOI: 10.1016/j.seppur.2009.10.007
  • 52. Zhu Jianzhong, Liang H., Fang J., Zhu Jianguo, Shi B., 2011. Characterization of chlorinated tire-derived mesoporous activated carbon for adsorptive removal of toluene. CLEAN – Soil, Air, Water, 39, 557–565. DOI: 10.1002/clen.201000265.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71d1e15b-f5cb-4047-a2fb-5ac5bfdb26db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.