PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the properties of lignins as potential carbon precursors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to growing interest in the application of renewable resources in industry, there is a need for new carbon precursors. Lignin is a natural polymer and the main by-product of the paper industry, but its application on an industrial scale is limited. Due to its chemical composition and high aromatic carbon content, combined with a lack of toxicity, it may be a promising candidate for a carbon precursor, as well as – in carbon electrode technology – a carbon binder. The main disadvantage of lignins is the variety of their types, with differing properties. There is a need to establish the relationship between the structure of lignin and its carbon precursor potential. In this work, an attempt was made to find the dependence between the lignin structure and its properties before (chemical composition, structural studies) and after thermal treatment under an inert atmosphere (carbon residue, bonding properties and degree of carbonization and graphitization), using different techniques (FTIR, Raman spectroscopy, XPS, TG, SEM) on two softwood lignins – alkali lignin and kraft lignin. The results proved that both lignins are good candidates for carbon precursors (high mass residue after heat treatment), but only kraft lignin exhibits the bonding properties which are crucial for application as a carbon binder.
Rocznik
Strony
19--34
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • Tokai Cobex Polska sp. z o.o, Racibórz
  • AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
Bibliografia
  • Afanasov I.M., Kepman A.V., Morozov V.A., Seleznev A.N., Avdeev V.V. [2009]: Determination of polyaromatic hydrocarbons in coal tar pitch. Journal of Analytical Chemistry 64: 361-365. DOI: https://doi.org/10.1134/S1061934809040078
  • Agarwal U.P., Mcsweeny J.D., Ralph S.A., Agarwal U.P., Mcsweeny J.D., Ralph S.A. et al. [2017]: FT – Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. Journal of Wood Chemistry and Technology 31: 324-344. DOI: https://doi.org/10.1080/02773813. 2011.562338
  • Alber A., Ehlting J. [2012]: Chapter 4 – Cytochrome P450s in lignin biosynthesis [Internet]. Advances in Botanical Research 61: 113-143. DOI: https://doi.org/10.1016/b978-0-12-416023-1.00004-5
  • Asmadi M., Kawamoto H., Saka S. [2011a]: Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins. Journal of Analytical and Applied Pyrolysis 92: 417-425. DOI: https://doi.org/10.1016/j.jaap.2011.08.003
  • Asmadi M., Kawamoto H., Saka S. [2011b]: Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei. Journal of Analytical and Applied Pyrolysis 92: 88-98. DOI: https://doi.org/10.1016/j.jaap.2011.04.011
  • Asmadi M., Kawamoto H., Saka S. [2011c]: Thermal reactivities of catechols/ pyrogallols and cresols/xylenols as lignin pyrolysis intermediates. Journal of Analytical and Applied Pyrolysis 92: 76-87. DOI: https://doi.org/10.1016/j.jaap. 2011.04.012
  • Baron J.T., Mckinney S.A., Wombles R.H. [2009] Coal tar pitch – past, present, and future. In: A. Tomsett, J. Johnson (eds), Essential Readings in Light Metals. Springer, Cham.: 935-939
  • Cabrera Y., Cabrera A., Jensen A., Felby C. [2017]: Purification of biorefinery lignin with alcohols 3813: 339-351. DOI: https://doi.org/10.1080/02773813.2016.1148168
  • Cao Q., Guo L., Dong Y., Xie X., Jin L. [2015]: Autocatalytic modification of coal tar pitch using benzoyl chloride and its effect on the structure of char. Fuel Processing Technology 129: 61-66. DOI: https://doi.org/10.1016/j.fuproc.2014.08.017
  • Cottyn B., Rivard M., Majira A., Beauhaire J., Allais F., Martens T. et al. [2015]: Comparative electrochemical study on monolignols and dimers relevant for the comprehension of the lignification process. Phytochemistry Letters, Phytochemical Society of Europe 13: 280-285. DOI: https://doi.org/10.1016/j.phytol.2015.07.002
  • Davin L.B., Lewis N.G. [2005]: Lignin primary structures and dirigent sites 16: 407-15. DOI: https://doi.org/10.1016/j.copbio.2005.06.011
  • Demir M., Kahveci Z., Aksoy B., Palapati N.K.R., Subramanian A., Cullinan H.T., El-Kaderi H.M., Harris C.T., Gupta R.B. [2015]: Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin. Inustrial and Engineering Chemistry Research 54 [43]. DOI: 10.1021/acs.iecr.5b02614
  • Dhamaniya S., Das D., Satapathy B.K., Jacob J. [2012]: Influence of block composition on structural, thermal and mechanical properties of novel aliphatic polyester based triblock copolymers. Polymer 53: 4662-4671. DOI: https://doi.org/10.1016/j.polymer.2012.08.025
  • Diehl B.G., Brown N.R., Frantz C.W., Lumadue M.R., Cannon F. [2013]: Effects of pyrolysis temperature on the chemical composition of refined softwood and hardwood lignins. Carbon 60: 531-537. DOI: https://doi.org/10.1016/j.carbon.2013. 04.087
  • Gellerstedt G. [2015]: Softwood kraft lignin: raw material for the future. Industrial Crops and Products 77: 845-854
  • Ghaffar S.H., Fan M. [2013]: Structural analysis for lignin characteristics in biomass straw. Biomass and Bioenergy 57: 264-279. DOI: https://doi.org/10.1016/j.biombioe.2013.07.015
  • Gilca I.A., Ghitescu R.E., Puitel A.C., Popa V.I. [2014]: Preparation of lignin nanoparticles by chemical modification. Iranian Polymer Journal 23: 355-363. DOI: https://doi.org/10.1007/s13726-014-0232-0
  • Gutierrez-Pardo A., Ramirez-Rico J., Cabezas-Rodriguez R., Martinez-Fernandez J. [2015]: Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. Journal of Power Sources 278: 18-26. DOI: https://doi.org/10.1016/j.jpowsour.2014.12.030
  • Hu Z., Du X., Liu J., Chang H. and Jameel H. [2017]: Structural characterization of Pine kraft lignin : BioChoice lignin vs indulin AT. Journal of Wood Chemistry and Technology 36: 432-446. DOI: https://doi.org/10.1080/02773813.2016.1214732
  • Huang Z.K., Lu Q.F., Lin Q., Cheng X. [2012]: Microstructure, properties and lignin-based modification of wood-ceramics from rice husk and coal tar pitch. Journal of Inorganic and Organometallic Polymers and Materials 22: 1113-1121. DOI: https://doi.org/10.1007/s10904-012-9708-6
  • Huang Y., Wang L., Chao Y., Nawawi D.S., Yokoyama T. and Matsumoto Y. [2017a]: Analysis of lignin aromatic structure in wood based on the IR spectrum analysis of lignin aromatic structure in wood. Journal of Wood Chemistry and Technology 32: 294-303. DOI: https://doi.org/10.1080/02773813.2012.666316
  • Huang Y., Wang Z., Wang L., Chao Y., Akiyama T., Yokoyama T. et al. [2017b]: Analysis of lignin aromatic structure in wood fractions based on IR spectroscopy. Journal of Wood Chemistry and Technology 36 [5]: 1-6. DOI: https://doi.org/10.1080/02773813.2016.1179325
  • Jasiukaitytė-Grojzdek E., Kunaver M., Crestini C. [2017]: Lignin structural changes during liquefaction in acidified ethylene glycol. Journal of Wood Chemistry and Technology 3813: 342-360. DOI: https://doi.org/10.1080/02773813.2012.698690
  • Kawano Y., Fukuda T., Kawarada T., Mochida I., Korai Y. [1999]: Suppression of puffing during the graphitization of pitch needle coke by boric acid. Carbon 37 [4]: 555-560
  • Kawano Y., Fukuda T., Kawarada T., Mochida I., Korai Y. [2000]: Puffing behavior during the graphitization of coal-tar-based needle coke impregnated with iron (II) sulphate and boric acid. Carbon 38 [5]: 759-765
  • Kumar R., Singh R.K., Singh, D.P. [2016]: Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renewable and Sustainable Energy Reviews 58: 976-1006. DOI: https://doi.org/10.1016/j.rser.2015.12.120
  • Lu F., Ralph J. [2010]: Lignin [Internet]. 1st ed. Cereal Straw as a Resour. Sustain.Biomater. Biofuels. DOI: https://doi.org/10.1016/B978-0-444-53234-3.00006-7
  • Lumadue M.R., Cannon F.S., Brown N.R. [2012]: Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel 97: 869-875. DOI:https://doi.org/10.1016/j.fuel.2012.02.061
  • Mainka H., Hilfert L., Busse S., Edelmann F., Haak E., Herrmann A.S. [2015]: Characterization of the major reactions during conversion of lignin to carbon fiber.Integrative Medicine Research, Korea Institute of Oriental Medicine 4: 377-391. DOI: https://doi.org/10.1016/j.jmrt.2015.04.005
  • Martinez C., Sedano M., Mendoza J., Herrera R., Rutiaga J.G., Lopez P. [2009]: Effect of aqueous environment in chemical reactivity of monolignols. A New Fukui Function Study. Journal of Molecular Graphics and Modelling, 28: 196-201. DOI: https://doi.org/10.1016/j.jmgm.2009.07.002
  • Menendez R., Fernandez J.J., Bermejo J., Cebolla V., Mochida I., Korai Y. [1996]: The role of carbon black/coal-tar pitch interactions in the early stage of carbonization. Carbon 34: 895-902. DOI: https://doi.org/10.1016/0008-6223(96)00044-9
  • Oinonen P., Zhang L., Lawoko M., Henriksson G. [2015]: On the formation of lignin polysaccharide networks in Norway spruce. Phytochemistry 111: 177-184. DOI: https://doi.org/10.1016/j.phytochem.2014.10.027
  • Poletto M., Zattera A.J. [2013]: Materials produced from plant biomass. Part III: Degradation kinetics and hydrogen bonding in lignin. Materials Research 16: 1065-1070.DOI: https://doi.org/10.1590/S1516-14392013005000112
  • Popova O.V., Serbinovskii M.Y. [2014]: Graphite from hydrolysis lignin: Preparation procedure, structure, properties, and application. Russian Journal of Applied Chemistry 87: 818–23. DOI: https://doi.org/10.1134/S1070427214060251
  • Rodriguez C., Otto T., Kruse A. [2017]: Biomass and bioenergy influence of the biomasscomponents on the pore formation of activated carbon. Biomass and Bioenergy 97: 53-64. DOI: https://doi.org/10.1016/j.biombioe.2016.12.017
  • Skoczkowski K. [1995]: Technologia produkcji wyrobow węglowo-grafitowych, Śląskie Wydawnictwo Techniczne
  • Stark N.M., Yelle D.J., Agarwal U.P. [2016]: 4 – Techniques for characterizing lignin [Internet]. Lignin in Polymer Composites: 49-66 DOI: https://doi.org/10.1016/B978-0-323-35565-0.00004-7
  • Verma S.R., Dwivedi U.N. [2014]: Lignin genetic engineering for improvement of wood quality: Applications in paper and textile industries, fodder and bioenergy production. South African Journal of Botany, South African Association of Botanists 91: 107-125. DOI: https://doi.org/10.1016/j.sajb.2014.01.002
  • Yan Q., Li J., Zhang X., Hassan E.B., Wang C., Zhang J., Cai Z. [2018]: Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals. Journal of Nanoparticle Research 20: 233. DOI: https://doi.org/10.1007/s11051-018-4317-0
  • You T.T., Zhang L.M., Zhou S.K., Xu F. [2015]: Structural elucidation of lignin-carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Industrial Crops and Products 71: 65-74. DOI: https://doi.org/10.1016/j.indcrop.2015.03. 070
  • Zambrzycki M., Frączek-Szczypta A. [2020]: Study on the synthesis and properties of hierarchically structured electrospun/vapour-grown carbon nanofibres nanocomposites. Journal ofIndustrial and Engineering Chemistry 86: 100-112. DOI: https://doi.org/10.1016/j.jiec.2020.02.017
  • Zhang Q., Chen Q., Chen J., Wang K., Yuan S., Sun R. [2015]: Morphological variation of lignin biomacromolecules during acid-pretreatment and biorefinery-based fractionation. Industrial Crops and Products 77: 527-534. DOI: https://doi.org/10.1016/j.indcrop.2015.09.021
  • Zhao Q., Dixon R.A. [2011]: Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in Plant Science 16: 227-233. https://doi.org/10.1016/j.tplants.2010.12.005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71cf9d5d-a709-43d8-95fd-bb5f186dde69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.