PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-wetting to Wetting Transition Temperatures of Liquid Tin on Surfaces of Different Steel Samples Corresponding to their Spontaneous Deoxidation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this paper is to measure the non-wetting to wetting transition temperatures of liquid tin on surfaces of different steel samples in vacuum with residual pressure of 10-8 bar. The experiments were conducted on four steels (C45, S103, CK60 and EN1.4034) of varying compositions using pure tin (99.99%) by the sessile drop method. Non-wetting to wetting transition (contact angle decreasing below 90°) by liquid tin was observed as function of increasing temperature in the range of 820-940 K for low alloyed steels C45, S103 and CK60, while it was considerably higher (around 1130 K) for high chromium EN1.4034 steel. it is concluded that at about the same temperatures, the surfaces of the steel samples are spontaneously deoxidized due to the combined effect of high temperature, low vacuum and C-content of steels. After the oxide layer is removed, the contact angles of liquid tin on steel surfaces were found in the range of 45-80° for low alloyed C45, S103 and CK60 steels and around 20° for high chromium EN1.4034 steel. These relatively high contact angle values compared to other metal/metal couples (such as liquid Cu on steels) are due to the formation of not fully metallic intermetallic compounds (FeSn and FeSn2) at the interface (such do not form in the Cu/Fe system).
Słowa kluczowe
Twórcy
autor
  • University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
  • University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
  • University of Babylon, College of Materials Engineering, Iraq
autor
  • University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
  • University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
autor
  • University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
  • MTA-ME Materials Science Research Group, 3515 Miskolc-Egyetemvaros, Hungary
Bibliografia
  • [1] T. Young, Philos. Trans. R. Soc. Lond. (95), 65-8 (1805).
  • [2] N. Eustathopoulos, M. G. Nicholas, B. Drevet, Wettability at high temperatures, Elsevier (1999).
  • [3] L. Yin, B. T. Murray, S. Su, Y. Sun, Y. Efraim, H. Taitelbaum, T.J. Singler, JOP: Condens. Matter. 21 (46), 464130 (2009).
  • [4] J. Bico, C. Tordeux, D. Quéré, Europhys. Lett. 55 (2), 214-22 (2001).
  • [5] N. Eustathopoulos, R. Voytovych, J. Mater. Sci. 51 (1), 425-43 (2016).
  • [6] M.L. Molo, F. Valenza, N. Sobczak, A. Passerone, Adv. Sci. Technol. 64, 98-10 (2010).
  • [7] R. Asthana, N. Sobczak, JOM-e 52 (1), 1-19 (2000).
  • [8] G.W. Liu, F. Valenza, M.L. Muolo, G.J. Qiao, A. Passerone, J. Mater. Sci. 44 (22), 5990-599 (2009).
  • [9] J. Janczak-Rusch, G. Kaptay, L.P.H. Jeurgens, J. Mater. Eng. Perform. 23, 1608-13 (2014).
  • [10] G. Kaptay, Adv. Colloid. Interface Sci. 256, 163-19 (2018).
  • [11] G. Kumar, K.N. Prabhu, Adv. Colloid Interf. Sci. 133 (2), 61-8 (2007).
  • [12] J. Yang, Q. Yuan, Y.P. Zhao, Int. J. Heat Mass Transf. 118, 201-20 (2018).
  • [13] T J. Singler, S. Su, L. Yin, B.T. Murray, J. Mater. Sci. 47 (24), 8261-8274 (2012).
  • [14] A.M. Emelyanenko, L.B. Boinovich, Colloids Surf. A 189 (1-3), 197-20 (2001).
  • [15] N. Sobczak, M. Singh, R. Asthana, Curr. Opin. Solid State Mater. Sci. 9 (4-5), 241-25 (2005).
  • [16] N. Sobczak, R. Nowak, W. Radziwill, J. Budzioch, A. Glenz, Mater. Sci. Eng. A 495 (1-2), 43-4 (2008).
  • [17] N. Eustathopoulos, N. Sobczak, A. Passerone, K. Nogi, J. Mater. Sci. 40 (9-10), 2271-228 (2005).
  • [18] Y.N. Chang, F.I. Wei, J. Mater. Sci. 24 (1), 14-2 (1989).
  • [19] R.Y. Chen, W.Y.D. Yeun, Oxidation Metals 59 (5-6), 433-46 (2003).
  • [20] A.M. Huntz, A. Reckmann, C. Haut, C. Sévérac, M. Herbst, F.C.T. Resende, A.C.S. Sabioni, Mater. Sci. Eng. A 447 (1-2), 266-27 (2007).
  • [21] A. Vesel, M. Mozetic, A. Drenik, N. Hauptman, M. Balat-Pichelin, Appl. Surf. Sci. 255 (5), 1759-176 (2008).
  • [22] O. Kozlova, R. Voytovych, M.F. Devismes, N. Eustathopoulos, Mater. Sci. Eng. A 495 (1-2), 96-101 (2008).
  • [23] O. Kozlova, R. Voytovych, P. Protsenko, N. Eustathopoulos, J. Mater. Sci. 45 (8), 2099-210 (2010).
  • [24] C.S. Doyle, C.K. Seal, B.J. James, Appl. Surf. Sci. 257 (23), 10005-10017 (2011).
  • [25] A.F. Rousseau, J.G. Partridge, Y.M. Gözükara, S. Gulizia, D.G. McCulloch, Vacuum 124, 85-8 (2016).
  • [26] S. Pour-Ali, M. Weiser, N.T. Nguyen, A.R. Kiani-Rashid, A. Babakhani, S. Virtanen, Corros. Sci. 163, 10828 (2020).
  • [27] Yu.V. Naidich, The Wettability of Solids by Liquid Metals. Progr. Surface Membrane Sci. 14, 353-48 (1981).
  • [28] S.I. Popel, V.N. Kozhurkov, T.V. Zakharoya, Zaschschita Metallov. Englisht Translation 7, 421-42 (1971).
  • [29] P. Protsenko, A. Terlain, V. Traskine, N. Eustathopoulos, Scr. Mater. 45 (12), 1439-144 (2001).
  • [30] Y. Takada, S. Shimada, J. Lee, M. Kurosaki, T. Tanaka, J. ISI, 93 (8), 532-53 (2007).
  • [31] Y. Kang, J. Han, H. Kim, J. Lee, Mater. Sci. 51 (4), 1713-172 (2016).
  • [32] J. Lee, T. Tanaka, M. Yamamoto, S. Hara, Mater. Trans. 45 (3), 625-62 (2004).
  • [33] T. Ishida, Mater. Sci. Technol. 4 (9), 830-83 (1988).
  • [34] S. Su, L. Yin, Y. Sun, B.T. Murray, T.J. Singler, Acta Mater. 57 (10), 3110-312 (2009).
  • [35] L. Yin, S.J. Meschter, T.J. Singler, Acta Mater. 52 (10), 2873-288 (2004).
  • [36] L. Yin, B T. Murray, T J. Singler, Acta Mater. 54 (13), 3561-357 (2006).
  • [37] P. Baumli, Mater. Sci. Eng. A (University of Miskolc) 40 (1), 42-4 (2015).
  • [38] S. Amore, E. Ricci, G. Borzone, R. Novakovic, Mater. Sci. Eng. A 495 (1-2), 108-112 (2008).
  • [39] Z. Weltsch, J. Hlinka, Mater. Eng. - Materiálové Inžinier (MEMI) 20 (1), 32-3 (2012).
  • [40] J. Hlinka, M. Berczeli, G. Buza, Z. Weltsch, Solder Surface Mount Technol. 69-7 (2017).
  • [41] J. Hlinka, Z. Fogarassy, A. Cziráki, Z. Weltsch, Appl. Surf. Sci. 501, 14412 (2020).
  • [42] J. Hlinka, Z. Weltsch, Ms&E 448 (1), 01202 (2018).
  • [43] J. Pstruś, P. Fima, T. Gancarz, J. Mater. Eng. Perf. 21 (5), 606-61 (2012).
  • [44] M.P. Kumar, G. Gergely, D. Koncz-Horvath, Z. Gacsi, Arch. Metall. Mater. 64, 603-60 (2019).
  • [45] M.K. Pal, G. Gergely, D. Koncz-Horváth, Z. Gácsi, Powder Metall. Metal. Ceramics 58, 529-53 (2020).
  • [46] M.K. Pal, G. Gergely, D. Koncz-Horváth, Z. Gácsi, Surf. Interf. 10057 (2020).
  • [47] S. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75, 77-9 (2017).
  • [48] N. Jiang, L. Zhang, Z.Q. Liu, L. Sun, W.M. Long, P. He, M. Zhao, Sci. Technol. Adv. Mater. 20 (1), 876-901 (2019).
  • [49] I. Barin, Thermochemical Data of Pure Substances. Wiley-VCH, (1989).
  • [50] G. Kaptay, E. Báder, Trans. Jwri, 30 - S. I. 55-6 (2001)
  • [51] M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, W.A. Wakeham, J. Phys. Chem. Ref. Data 39 (3), 03310 (2010).
  • [52] Y. S. Kwon, K.B. Gerasimov, S.S. Avramchuck, J. All. Comp. 359 (1-2), 79-8 (2003).
  • [53] R. Nesper, Angew. Chem. Int. Ed. 30 (7), 789-81 (1991).
  • [54] Stephan Hasse, Foundry Lexicon, Foundry Technologies & Engineering GmbH, www.foundry-lexicon.com.
  • [55] T. Ishida, J. Mater. Sci. 21 (4), 1171-117 (1986).
  • [56] D. Varanasi, J.T. Szabo, P. Baumli, Nanoworld J. 5 (3), 36-4 (2019).
  • [57] Q. Sun, P. Jin, Y. Liu, J. Li, J. Wang, T. Ma, J. Feng, Mater. Des. 169, 10766, (2019).
  • [58] B. Stenström, Phys, Script. 6 (4), 214-21 (1972).
  • [59] M. Armbrüster, W. Schnelle, R. Cardoso‐Gil, Y. Grin, Chem. Eur. J. 16 (34), 10357-10365 (2010).
  • [60] S. Kasap, Handbook of Electronic and Photonic Materials, Springer, (2006).
  • [61] E. Báder, L. Zoltai, M. Hördler, P. Arató, R.F. Singer, G. Kaptay, Trans. JWRI 30, 137-14 (2001).
  • [62] P. Baumli, J. Sychev, I. Budai, J.T. Szabo, G. Kaptay, Compos. Part A 44, 47-5 (2013)
Uwagi
1. The research work presented are based on the results achieved within the GINOP2.3.2-15-2016-00027 “Sustainable operation of the workshop of excellence for the research and development of crystalline and amorphous nanostructured materials” project implemented in the framework of the Szechenyi 2020 Program. The realization of this project is supported by the European union. The authors would like to thank Mrs. Aniko Markus and Mrs. Napsugar Nyari Bodnar for sample preparation.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71c93fc8-8c37-401d-a506-e8322c7f823c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.