PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of DSC curves and the Kronmüller theory to study the level of structural defects of Fe-based bulk amorphous alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of tests carried out on rapid quenched Fe-based alloys. The alloys were made using an injection-casting method. The actual structure of the alloys was also studied using an indirect method, based on H. Kronmüller's theorem. Based on analysis of the primary magnetization curves, in accordance with the aforementioned theory, it was found that Mo causes a change in internal regions associated with changes in the direction of the magnetization vector. The evolution of the thermal properties with increasing volume of Mo has been confirmed by the DSC curves. Addition of Mo, at the expense of the Nb component, results in changes to the crystallization process (i.e. the crystallization onset temperature and number of stages). The study showed that the addition of Mo at the expense of Nb reduces glass forming ability. Based on the DSC analysis, free volumes were determined for the alloys tested. These values were compared with the analysis of primary magnetization curves. It was found that the DSC curves can be used to indirectly describe the structure of amorphous alloys similar to the theory of the approach to ferromagnetic saturation. This approach is new and can be used by many researchers in this field.
Rocznik
Strony
art. no. e144613
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
  • Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] P. Duwez, R.H.Willens, and R.C. Crewdson, “Amorphous phase in palladium – silicon alloys,” J. Appl. Phys., vol. 36, p. 2267, 1965, doi: 10.1063/1.1714461.
  • [2] W. Klement, R.H.Willens, and P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys,” Nature, vol. 187, no. 4740, pp. 869–870, 1960, doi: 10.1038/187869b0.
  • [3] H.S. Chen and D. Turnbull, “Formation, stability and structure of palladium-silicon based alloy glasses,” Acta Metallurgica, vol. 17, pp. 1021–1031, 1969, doi: 10.1016/0001-6160(69)90048-0.
  • [4] M.E. McHenry, M.A. Willard, and D.E. Laughlin, “Amorphous and nanocrystalline materials for applications as soft magnets,” Prog. Mater. Sci., vol. 44, p. 291, 1999, doi: 10.1016/S0079-6425(99)00002-X.
  • [5] H.X. Lia, Z.C. Lua, S.L. Wang, B, Y. Wua, and Z.P. Lu, “Febased bulk metallic glasses: Glass formation, fabrication, properties and applications,” Prog. Mater. Sci., vol. 103, pp. 235–318, 2019, doi: 10.1016/j.pmatsci.2019.01.003.
  • [6] F. Wang et al., “Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85 T and low coercivity below 3 A/m,” J. Alloy. Compd., vol. 711, pp. 132–142, 2017, doi: 10.1016/j.jallcom.2017.03.341.
  • [7] X. Li, Z. Shi, and T. Zhang, “Effect of similar element substitution on Fe-B-Si-Mo bulk metallic glasses studied by experiment and ab initio molecular dynamics simulation,” J. Alloy. Compd., vol. 784, pp. 1139–1144, 2019, doi: 10.1016/j.jallcom.2019.01.122.
  • [8] Y. Geng et al., “Formation and structure-property correlation of new bulk Fe–B–Si–Hf metallic glasses,” Mater. Des., vol. 106, pp. 69–73, 2016, doi: 10.1016/j.matdes.2016.05.102.
  • [9] Z. Jaafari, A.Seifoddini, and S.Hasani, “Enhanced mechanical and magnetic properties of [(Fe0:9ni0:1)77Mo5P9C7:5B1:5]99:9 Cu0:1 bulk metallic glass by partial annealing,” Metall. Mater. Trans., vol. 50, pp. 2875–2885, 2019, doi: 10.1007/s11661-019-05195-z.
  • [10] Y. Han et al., “FeCo-based soft magnetic alloys with high Bs approaching 1.75 T and good bending ductility,” J. Alloy. Compd., vol. 691, pp. 364–368, 2017, doi: 10.1016/j.jallcom.2016.08.250.
  • [11] K. Błoch, “Magnetic properties of the suction-cast bulk amorphous alloy: (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)96Y4,” J. Magn. Magn. Mater., vol. 390, pp. 118–122, 2015, doi: 10.1016/j.jmmm.2015.04.032.
  • [12] J. Gondro, “Structure, core losses, curie temperature, defects in the structure of the bulk amorphous alloy Fe55Co15 W2Y8B20,” Rev. Chim., vol. 70, no. 7, pp. 2699–2702, 2019, doi: 10.37358/RC.19.7.7409.
  • [13] P. Pietrusiewicz, M. Nabialek, J. Olszewski, and S. Lesz, “The influence of an isothermal annealing process on the structure and magnetic properties of the bulk amorphous alloy Fe-CoBYMo,” Mater. Technol., vol. 51, pp. 157–162, 2017, doi: 10.17222/mit.2015.151.
  • [14] H. Kronmüller and M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, Cambridge University Press: Cambrige, UK, 2003.
  • [15] H. Kronmüller and S. Parkin, Handbook of Magnetism and Advanced Magnetic Materials, Wiley: Hoboken, NJ, USA, 2007.
  • [16] H. Kronmüller, M. Fahnle, H. Grimm, R. Grimm, and B. Gröger, “Magnetic properties of amorphous ferromagnetic alloys,” J. Magn. Magn. Mater., vol. 13, p. 53, 1979, doi: 10.1016/0304-8853(79)90029-5.
  • [17] H. Kronmüller, “Micromagnetism in Amorphous Alloys,” IEEE Trans. Magn., vol. 15, p. 1218, 1979, doi: 10.1109/TMAG.1979.1060343.
  • [18] H. Grimm and H. Kronmüller, “Investigation of structural defects in the amorphous ferromagnetic alloy Fe40Ni40P14B6,” Phys. Status Solidi B-Basic Res., vol. 117, pp. 663–674, 1983, doi: 10.1002/pssb.2221170228.
  • [19] T. Holstein and H. Primakoff, “Magnetization near saturation in polycrystalline ferromagnets,” Phys. Rev., vol. 59, pp. 388–394, 1949, doi: 10.1103/PhysRev.59.388.
  • [20] F. Hu, C. Yuan, Q. Luo, W. Yang, and B. Shen, “Effects of Ho addition on thermal stability, thermoplastic deformation and magnetic properties of FeHoNbB bulk metallic glasses,” J. Alloy. Compd., vol. 807, p. 151675, 2019, doi: 10.1016/j.jallcom.2019.151675.
  • [21] T. Qi, Y. Li, A. Takeuchi, G. Xie, H. Miao, and W. Zhang, “Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses,” Intermetallics, vol. 66, pp. 8–12, 2015, doi: 10.1016/j.intermet.2015.06.015.
  • [22] A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element,” Mater. Trans., vol. 46, pp. 2817–2829, 2005, doi: 10.2320/matertrans.46.2817.
  • [23] T. Nagase, M. Suzuki, and T. Tanaka, “Amorphous phase formation in Fe–Ag-based immiscible alloys,” J. Alloy. Compd., vol. 619, pp. 311–318, 2015, doi: 10.1016/j.jallcom.2014.08.212.
  • [24] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties,” Mater. Sci. Eng. A, vol. 226–228, pp. 357–363, 1979, doi: 10.1016/S0921-5093(97)80049-4.
  • [25] E.R. Shaaban and I.B.I. Tomsah, “The effect of Sb content on glass-forming ability, the thermal stability, and crystallization of Ge–Se chalcogenide glass,” J. Therm. Anal. Calorim., vol. 105, pp. 191–198, 2011, doi: 10.1007/s10973-011-1317-z.
  • [26] E. Civan, K. Sarlar, and I. Kucuk, “Improving magnetocaloric properties of Fe68-xCrxTb5B23Nb4 (x=0, 2, 4, 6 and 8) metallic glasses having high glass-forming ability with tunable Curie temperature,” Philos. Mag., vol. 97, pp. 1464–1478, 2017, doi: 10.4283/jmag.2019.24.1.043.
  • [27] B. Wunderlich, Y. Jin, and A. Boller, “Mathematical description of differential scanning calorimetry based on periodic temperature modulation,” Thermochim. Acta, vol. 238, pp. 277–293, 1994, doi: 10.1016/S0040-6031(94)85214-6.
  • [28] A. Inoue, “High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates,” Mater. Trans. JIM, vol. 36, pp. 866–875, 1995, doi: 10.2320/matertrans1989.36.866.
  • [29] D. Turnbull, “Under what conditions can a glass be formed,” Contemp. Phys., vol. 10, pp. 473–488, 1969, doi: 10.1080/00107516908204405.
  • [30] Z.P. Lu and C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses,” Acta Mater., vol. 50, pp. 3501–3512, 2002, doi: 10.1016/S1359-6454(02)00166-0.
  • [31] Q. Chen, J. Shen, D. Zhang, H. Fan, J. Sun and D. McCartney, “A new criterion for evaluating the glass-forming ability of bulk metallic glasses,” Mater. Sci. Eng. A, vol. 433, pp. 155–160, 2006, doi: 10.1016/j.msea.2006.06.053.
  • [32] P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani, “Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: The kinetic analysis,” J. Non-Cryst. Solids, vol. 471, pp. 286–294, 2017, doi: 10.1016/j.jnoncrysol.2017.05.044.
  • [33] Z. Jaafari, A. Seifoddoni, S. Hasani, and P. Rezaei-Shahreza, “Kinetic analysis of crystallization process in [(Fe0. 9Ni0.1) 77Mo5P9C7. 5B1. 5] 100- xCux (x= 0.1 at.%) BMG,” J. Therm. Anal. Calorim., vol. 134, pp. 1565–1574, 2018, doi: 10.1007/s10973-018-7372-y.
  • [34] H.E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem., vol. 29, pp. 1702–1706, 1957, doi: 10.1021/ac60131a045.
  • [35] K.S. Dubey and P. Ramchandrarao, “On the free energy change accompanying crystallisation of undercooled melts,” Acta Metall., vol. 32, pp. 91, 1984, doi: 10.1016/0001-6160(84)90205-0.
  • [36] M. Shi, Z. Liu, and T. Zhang, “Effects of minor Sn addition on the glass formation and properties of Fe-metalloid metallic glasses with high magnetization and high glass forming ability,” J. Magn. Magn. Mater., vol. 378, pp. 417–423, 2015, doi: 10.1016/j.jmmm.2014.10.144.
  • [37] L. Battezzati and E. Garrone, “On the approximation of the free energy of undercooled glass-forming metallic melts,” Zeitschriftfuer Metallkunde, vol. 75, pp. 305–310, 1984, doi: 10.1515/ijmr-1984-750410.
  • [38] C. Qing-Jun, S. Jun, F. Hong-Bo, S. Jian-Fei, and H. Yong-Jiang, “Glass-forming ability of an iron-based alloy enhanced by Co addition and evaluated by a new criterion,” Chin. Phys. Lett., vol. 22, pp. 1736–1738, 2005.
  • [39] S. Hasani, P. Rezaei-Shahreza, A.Seifoddini, and A. Hakimi, “Enhanced glass-forming ability, mechanical, and magnetic properties of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass with minor addition of Cu,” J. Non-Cryst. Solids, vol. 497, pp. 40–47, 2018, doi: 10.1016/j.jnoncrysol.2018.05.021.
  • [40] X. Li and T. Zhang, “Correlation between local structure and glass forming ability enhanced by similar element substitution in (La-Ce)-Co-Al bulk metallic glasses,” J. Appl. Phys., vol. 122, pp. 85103, 2017, doi: 10.1063/1.4998437.
  • [41] N. Kaul, “Magnetic properties of amorphous (Fe, Ni)80B20, (Fe, Ni)80B19si1, and (Fe, Ni)80P14B6 alloys,” IEEE Trans. Magn., vol. 17, pp. 1208–1215, 1981, doi: 10.1109/TMAG.1981.1061194.
  • [42] B.W. Corb, R.C. O’Handley, and N.J. Grant, “Chemical bonding, magnetic moments, and local symmetry in transition-metal – Metalloid alloys,” Phys. Rev. B, vol. 27, p. 636, 1983, doi: 10.1103/PhysRevB.27.636.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71c494a3-bd1f-4140-89fc-c7e0522c4b3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.