PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated supervision for supporting control and proactive maintenance of material handling system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Material handling systems, as an important part of different type of manufacturing processes, face the same challenges as manufacturing industries pushed nowadays forward by innovative ideas and technologies to the next level loudly announced as industry 4.0. Development of the next generation of automated manufacturing systems involves advanced approaches to material handling systems design and their close integration with the higher levels of manufacturing and production control and management, e.g. manufacturing execution systems (MES), enterprise resource planning (ERP). In the presence of increasing demands for manufacturing process optimization, the role of supervisory level of material handling systems is much more advanced today, ensuring not only data acquisition, visualization, monitoring, supervisory control, as well as synchronization with the higher control levels (FEM, ERP), but also providing functionality for supporting maintenance and decision-making processes to reduce downtimes, operations and maintenance costs. The article deals with the integration of control and maintenance functions in the hierarchical control system of a crane. The supervisory system for supporting control and proactive maintenance is prototyped at the laboratory overhead travelling crane. The article presents the controlmeasurement equipment and intelligent software tools implemented in the supervisory control and data acquisition (SCADA) system to aid decision-making process in proactive maintenance. The overview of the main components of the supervisory control and proactive maintenance subsystems is provided, and their respective role in control, supervision, and proactive maintenance is explained. The crane’s supervisory control includes the stereovision-based subsystem applied to identify the crane’s transportation workspace, determine the safety and time-optimal point-to-point trajectory of a payload. The proactive maintenance module consists of the human machine interface (HMI) supporting decision-making process, intelligent tools for upcoming downtime/ failure prediction, and the crane’s girder inspection using the metal magnetic memory technique.
Twórcy
autor
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics Mickiewicza Av. 30, 30-059 Krakow, Poland tel.: +48 12 6173104
Bibliografia
  • [1] Azizi, A., Yazdi, P. G., Humairi, A. A., Alsami, M., Rashdi, B. A., Al Zakwani, Z., Al. Sheikaili, S., Design and fabrication of intelligent material handling system in modern manufacturing with industry 4.0 approaches, International Robotics & Automation Journal, Vol. 4 (3), pp. 186-195, 2018.
  • [2] Dubov, A. A., Principal features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods, Montreal World Conference on Non Destructive Testing, August, 2004.
  • [3] Findeison, W., Hierarchical control systems – an introduction, International Institute for Applied Systems Analysis, Laxenburg, Austria 1978.
  • [4] Gaska, D., Margielewicz, J., Haniszewski, T., Matyja, T., Konieczny, L., Chrost, P., Numerical identification of the overhead traveling crane's dynamic factor caused by lifting the load off the ground, Journal of Measurements in Engineering, Vol. 3 (1), pp. 34-35, 2015.
  • [5] Gaska, D., Pypno, C., Strength and elastic stability of cranes in aspect of new and old design standards, Mechanika, No. 3, pp. 226-231, 2011.
  • [6] Haniszewski, T., Modeling the dynamics of cargo lifting process by overhead crane for dynamic overload factor estimation, Journal of Vibroengineering, Vol. 19 (1), pp. 75-86, 2017.
  • [7] Juraszek, J., Residual magnetic field non-destructive testing of gantry cranes, Materials, Vol. 12 (564), pp. 1-11, 2019.
  • [8] Juraszek, J., Residual magnetic field for identification of damage in steel wire rope, Archives of Mining Sciences, Vol. 64 (1), pp. 79-92, 2019.
  • [9] Kosoń-Schab, A., Smoczek, J., Szpytko, J., Crane frame inspection using metal magnetic memory method, Journal of KONES Powertrain and Transport, Vol. 23, No. 2, pp. 185-191, 2016.
  • [10] Ramli, L., Mohamed, Z., Abdullahi, A. M., Jaafar, H. I., Lazim, I. M., Control strategies for crane systems: A comprehensive review, Mechanical Systems and Signal Processing, Vol. 95, pp. 1-23, 2017.
  • [11] Smoczek, J., Szpytko, J., Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system, Engineering Applications of Artificial Intelligence, vol. 28, pp. 190-200, 2014.
  • [12] Szpytko, J., Hyla, P., Disparity compute methods in three-dimensional scene reconstruction for overhead travelling crane work space visualization, Journal of KONES Powertrain and Transport, Vol. 19, No. 3, pp. 421-428, 2012.
  • [13] Trąbka, A., The impact of the support system’s kinematic structure on selected kinematic and dynamic quantities of an experimental crane, Acta Mechanica et Automatica, Vol. 8 (4), pp. 189-193, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71c27ce7-58d1-4f41-abe6-c1c277e8caef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.