Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cracking is a most unwanted development in soil structures under-going periodic drying and wetting. Desiccation cracks arise in an apparent absence of external forces. Hence, either an internal, self-equilibrated stress pattern resulting from kinematic incompatibilities, or a stress resulting from reaction forces at the constraints appear as a cracking cause, when reaching tensile strength. At a mesoscale, tubular drying pores are considered in the vicinity of a random imperfection, inducing a stress concentration in the presence of significant pore suction. This approach allows one to use the effective stress analysis, which otherwise, away from the stress concentration, usually yields compressive effective stress and hence a physically incompatible criterion for a tensile crack. Recent experiments on idealized configurations of clusters of grains provide geometrical data suggesting that an imperfection as a result of air entry deep into the granular medium penetrates over 4 to 8 internal radii of a typical pore could yield a tensile effective stress sufficient for crack propagation
Wydawca
Czasopismo
Rocznik
Tom
Strony
1049--1059
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Duke University, Durham, USA
autor
- Institut de Radioprotection et de Surete Nucleaire, Saint-Paul-lez-Durance, France
autor
- Laboratoire de Mécanique et Génie Civ il de Montpelier, CNRS, Université de Montpellier 2, France
autor
- University of Toledo, Toledo, USA
autor
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Bibliografia
- 1. Brinker, C.J., and G.W. Scherer (1990), Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego.
- 2. Chertkov, V.Y. (1995), Evaluation for soil of crack net connectedness and critical stress-intensity factor, Int. Agrophys.9, 189-195.
- 3. Childs, E.C. (1969), An Introduction to the Physical Basis of Soil Water Phenomena, John Wiley–Interscience, London, 493 pp.
- 4. Corte, A., and A. Higashi (1964), Experimental research on desiccation cracks in soil, Final Rep. CRREL-RR-66, National Technical Information Service, Alexandria, USA.
- 5. Fredlund, D.G., and H. Rahardjo (1993), Soil Mechanics for Unsaturated Soils, John Wiley & Sons, New York. Fung, Y.C. (1984), Biodynamics: Circulation, Springer, New York.
- 6. Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013a), Desiccation shrinkage of non-clayey soils: multiphysics mechanisms and a microstructural model, Int. J. Numer. Anal. Meth. Geomech. 37, 12, 1761-1781, DOI: 10.1002/ nag.2108.
- 7. Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013b), Desiccation shrinkage of non-clayey soils: a numerical study, Int. J. Numer. Anal. Meth. Geomech.37, 12, 1782-1800, DOI: 10.1002/nag.2107.
- 8. Hu, L.B., H. Péron, T. Hueckel, and L.Laloui (2013c), Mechanisms and critical properties in drying shrinkage of soils: experimental and numerical para-metric studies, Can. Geoech. J.50, 5, 536-549, DOI: 10.1139/cgj-2012-0065.
- 9. Hu, L.B., M. Monfared, B. Mielniczuk, L. Laloui, T. Hueckel, and M.S. El Yous-soufi (2013d), Multi-scale approach to cracking criteria for drying silty soils. In:GeoCongress 2013, 4-7 March 2013, San Diego, USA, 838-845.
- 10. Kodikara, J., S.L. Barbour, and D.G. Fredlund (2002), Structure development in surficial heavy clay soils: A synthesis of mechanisms, Aust. Geomech. 37, 3, 25-40.
- 11. Lu, N., and W.J. Likos (2004),Unsaturated Soil Mechanics, John Wiley, New York.
- 12. Maeda, N., J.N. Israelachvili, and M.M. Kohonen (2003), Evaporation and instabilities of microscopic capillary bridges, Proc. Nati. Acad. Sci. USA100, 3, 803-808, DOI: 10.1073/pnas.0234283100.
- 13. Mielniczuk, B., T. Hueckel, and M.S. El Youssoufi (2013), Micro-scale study of rupture in desiccating granular media. In:GeoCongress 2013, 4-7 March 2013, San Diego, USA.
- 14. Mielniczuk, B., M.S. El Youssoufi, L. Sabatier, and T. Hueckel (2014), Rupture of an evaporating liquid bridge between two grains, Acta Geophys. 62, 5, 1087-1108, DOI: 10.2478/s11600-014-0225-6 (this issue).
- 15. Pellenq, R.J.M., B. Coasne, R.O. Denoyel,and O. Coussy (2009), Simple phenome-nological model for phase transitions in confined geometry. 2. Capillary condensation/evaporation incylindrical mesopores, Langmuir25, 3, 1393-1402, DOI: 10.1021/la8020244.
- 16. Péron, H. (2008), Desiccation cracking of soils, Ph.D. Thesis, EPFL, Lausanne.
- 17. Péron, H., T. Hueckel, L. Laloui, and L.B. Hu (2009), Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification, Can. Geotech. J.46, 10, 1177-1201, DOI: 10.1139/ T09-054.
- 18. Péron, H., L. Laloui, L.B. Hu, and T. Hueckel (2010), Desiccation cracking of soils. In:L. Laloui (ed.), Mechanics of Unsaturated Geomaterials, John Wiley, Hoboken, 55-86.
- 19. Péron, H., L. Laloui, L.B. Hu, and T. Hueckel (2013), Formation of drying crack patterns in soils: a deterministic approach, Acta Geotech.8, 2, 215-221, DOI: 10.1007/s11440-012-0184-5.
- 20. Scherer, G.W. (1992), Crack-tip stress in gels, J. Non-Cryst. Solids144, 210-216, DOI: 10.1016/S0022-3093(05)80402-8.
- 21. Taylor, G. (1959), The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets, Proc. Roy. Soc. LondonA253, 1274, 313-321, DOI: 10.1098/rspa. 1959.0196.
- 22. Terzaghi, K. (1927), Concrete roads: A problem in foundation engineering, J. Bos-ton Soc. Civil Eng.14, 265-282.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71bc619c-a8e9-446b-b601-42213927fb34