Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The modern global milk processing industry involves the use of innovations and optimization of existing industry management methods, which contributes to the realization of sustainable development and energy efficiency. Increasing the energy efficiency of dispersing and homogenizing milk and dairy products can contribute to the practical implementation of the philosophy of the "European Green Deal". The jet-slot milk homogenizer is one of the most energy-efficient among all types of homogenizers in the dairy industry. The principle of its operation is based on the creation of a maximum speed difference between the fat balls of cream and the flow of skimmed milk. This makes it possible to obtain a high degree of dispersion with high energy efficiency of the process. Reducing the specific energy consumption and finding the optimal parameters of the homogenizer were based on the results of both theoretical and experimental studies and were carried out graphically. The optimization criteria (decreasing specific energy consumption while maintaining high homogenization quality) were chosen to achieve a dispersion of 0.8 μm with minimal energy consumption. The diameter of the confusor is optimized at the point of greatest narrowing. The obtained results indicate that to increase the energy efficiency of homogenization, the parameter values should be within 3.5–4.0 mm. The parameters of the width of the ring gap, the fat content and the speed of the cream are optimized. The results showed that it is possible to reduce the specific energy intensity of the process to values of 0.88–0.92 kWh/t when using cream with a fat content of 33–43%, which should be fed through an annular gap with a width of 0.6–0.8 mm. Optimum values of the cream feed speed were found, which should be equal to 7–11 m/s. The research results are of high practical value for the further development of an energy-efficient industrial model of a jet-slot homogenizer.
Czasopismo
Rocznik
Tom
Strony
15--26
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
- Department of Equipment of Processing and Food Production Named after Professor F. Yu. Yalpachyk, Technical Service and Systems in the Agro-Industrial Complex, Dmytro Motornyi Tavria State Agrotechnological University, Zaporizhzhia, Ukraine, 72-000
autor
- Department of Equipment of Processing and Food Production Named after Professor F. Yu. Yalpachyk, Technical Service and Systems in the Agro-Industrial Complex, Dmytro Motornyi Tavria State Agrotechnological University, Zaporizhzhia, Ukraine, 72-000
autor
- Department of Equipment of Processing and Food Production Named after Professor F. Yu. Yalpachyk, Technical Service and Systems in the Agro-Industrial Complex, Dmytro Motornyi Tavria State Agrotechnological University, Zaporizhzhia, Ukraine, 72-000
autor
- Agriculture Academy, Vytautas Magnus University, Universiteto g. 10, Akademija, LT-53361 Kaunas, Lithuania
- Department of Mechanics and Agroecosystems Engineering, Polissia National University, Zhytomyr, Ukraine
autor
- Faculty of Engineering and Technology, Higher Educational Institution "Podillia State University", 32-300 Kamianets-Podilskyi, Ukraine
autor
- Department of Technology of Production and Processing of Livestock Products, Odesa State Agrarian University, Panteleimonivska Str. 13, Odesa, Ukraine, 65-012
autor
- Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
- Faculty of Technical Sciences and Design Arts, National Academy of Applied Sciences in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl
autor
- Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
autor
- Department of Applied Economics, Finance and Accounting, Agriculture Academy, Vytautas Magnus University, Universiteto g. 10, Akademija, LT-53361 Kaunas, Lithuania
- Ukrainian University in Europe – Foundation, Balicka 116, 30-149 Kraków, Poland
Bibliografia
- 1. Acharyaa, S., Mishrab, V., Patelc, J., 2021. Enhancing the mixing process of two miscible fluids: A review. AIP Conference Proceedings, 2341, 030025. DOI: 10.1063/5.0051818
- 2. Ansari, M., Kim, K., Kim, S., 2010. Numerical study of the effect on mixing of the position of fluidstream interfaces in a rectangular microchannel. Int. J. Microsystem Technologies, 16, 1757–1763. DOI: 10.1007/s00542- 010-1100-2
- 3. Brodziak, A., Wajs, J., Zuba-Ciszewska, M., (...), Stobiecka, M., Janczuk, A., 2021. Organic versus conventional raw cow milk as material for processing. Animals 11(10), 2760. DOI: 10.3390/ani11102760
- 4. Bulgakov V., Pascuzzi S., Adamchuk V., Kuvachov V., Nozdrovicky L., 2019. Theoretical study of transverse offsets of wide span tractor working implements and their influence on damage to row crops. Agriculture, 9(7), 144. DOI: 10.3390/agriculture9070144
- 5. Bulgakov, V., Kuvachоv, V., Olt, J., 2019. Theoretical study on power performance of agricultural gantry systems. Ann. DAAAM Proc. Int. DAAAM Symp., 30, 167–175. 10.2507/30th.daaam.proceedings.022
- 6. Cai, G., Xue, L., Zhang, H., Lin, J., 2017. A Review on Micromixers. Micromachines, 8 (9), 274–300. DOI: 10.3390/mi8
- 7. Camarri, S., 2022. T-shaped micromixers aligned in a row: Characterization of the engulfment regime. Eng. Acta Mechanica, 233, 1987–2077. DOI: 10.1007/s00707-022-03201-x
- 8. Cao, Z., Wu, Z., Sattari Najafabadi, M., Sunden, B., 2017. Liquid-Liquid Flow Patterns in Microchannels. In Proceedings of the ASME 2017 Heat Transfer Summer Conference, Bellevue, Washington, DC, USA, 1–9.
- 9. Capretto, L., Cheng, W., Hill, M., Zhang, X., 2011. Micromixing within Microfluidic Devices. Top Curr Chem, 304, 27-68. DOI: 10.1007/128_2011_150
- 10. Ciron, C., Gee, V., Kelly, A., Auty, M., 2010. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int. Dairy J., 20, 314–320. DOI: 10.1016/j.idairyj.2009.11.018
- 11. Darekar, M., Singh, K., Mukhopadhyay, S., Shenoy, K., 2017. Liquid-Liquid Two-Phase Flow Patterns in Y-Junction Microchannels. Ind. Eng. Chem. Res., 56, 12215–12226. DOI: 10.1021/ACS.IECR.7B03164
- 12. Dejnychenko, G., Samojchuk, K., Kovalyov, O., 2016. KonstruktsіJi strumynnykh dyspergatorіv zhyrovoJi fazy moloka. Pr. TDATU, 16 (1), 219-227.
- 13. Delivering the European Green Deal, EU, 2019, Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019- 2024/european-green-deal/delivering-european-green-deal_en (accessed on 2 May 2024).
- 14.Deynichenko, G., Samoichuk, K., Yudina, T., Levchenko, L., Palianychka, N., Verkholantseva, V., Dmytrevskyi, D., Chervonyi, V., 2018. Parameter optimization of milk pulsation disperser Journal of Hygienic Engineering and Design, 24, 63–67.
- 15. Dhankhar, P., 2014. Homogenization fundamentals. IOSR J. Eng. 4, 1–8. DOI: 10.9790/3021-04540108.
- 16. Di Marzo, L., Cree, P., Barbano, D., 2016. Prediction of fat globule particle size in homogenized milk using Fourier transform mid-infrared spectra. J. Dairy Sci., 99, 8549–8560 DOI: 10.3168/jds.2016–11284
- 17. Dreher, S., Kockmann, N., Woias, P., 2009. Characterization of Laminar Transient Flow Regimes and Mixing in T-shaped Micromixers. Heat Transf. Eng., 30, 91–100.
- 18. Erbil, H., 2012. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid Interface Sci. Elsevier B.V., 170, 6786. DOI: 10.1016/j.cis.2011.12.006
- 19. European Green Deal, EU, 2019, Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-greendeal_en (accessed on 1 April 2024).
- 20. Faichuk, O., Voliak, L., Pantsyr, Y., Slobodian, S., Szeląg-Sikora, A., Gródek-Szostak, Z., 2022. European Green Deal: Threats Assessment forAgri-Food Exporting Countries to the EU. Sustainability, 14, 3712. DOI: 10.3390/su14073712.
- 21. Fani, A., Camarri, S., Salvetti, M., 2013. Investigation of the steady engulfment regime in a three-dimensional T-mixer. Phys. Fluids, 25, 64–102. DOI: 10.1063/1.4809591.
- 22. Fialkova, E.A., 2006. Gomogenizatsiya. Novyj Vzglyad; Monografiyaspravochnik. SPb., GIORD, St. Petersburg, Russia, 392.
- 23. Fonte, C., Fletcher, D., Guichardon, P., Aubin, J., 2020. Simulation of micromixing in a T-mixer under laminar flow conditions. Chem. Eng. Sci., 222, 115706. DOI: 10.1016/j.ces.2020.115706
- 24. Foroughi, H., Kawaji, M., 2011. Viscous oil-water flows in a microchannel initially saturated with oil: Flow patterns and pressure drop characteristics. Int. J. Multiph. Flow, 37, 1147–1155
- 25. Gossett, D., Weaver, W., Mach, A., Hur, S., Tse, H., Lee, W., Amini, H., Carlo, D., 2010. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem., 397, 3249–3267.
- 26. Graskemper, V., Yu, X., Feil, J.-H., 2021. Farmer typology and implications for policy design – An unsupervised machine learning approach. Land Use Policy 103, 105328 DOI: 10.1016/j.landusepol.2021.105328
- 27. Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Trägårdh, C., Bergenståhl, B., 2013. Velocity measurements of turbulent two-phase flow in a highpressure disperser model. Chem. Eng. Commun., 200, 93–114. DOI: 10.1080/00986445.2012.691921
- 28. Haponiuk, E., Zander, L., Probola, G., 2015. Effect of the homogenization process on the rheological properties of food emulsions. Pol. J. Nat. Sci., 30, 149–158.
- 29. Havrylenko, Ye., Kholodniak, Yu., Halko, S., Vershkov, O., Miroshnyk, O., Suprun, O., Dereza, O., Shchur, T., Śrutek, M. 2021. Representation of a monotone curve by a contour with regular change in curvature. Entropy, 23(7), 923. DOI: 10.3390/e23070923
- 30. Hulevskyi, V., Stopin, Y., Postol, Y., Dudina, M., 2019. Experimental Study of Positive Influence on Growth of Seeds of Electric Field a High Voltage. Modern Development Paths of Agricultural Production. Trends and Innovations. Cham: Springer International Publishing, 349-354. DOI: 10.1007/978-3-030-14918-5_36
- 31. Huppertz, T., 2011. Homogenization of Milk Other Types of disperser (HighSpeed Mixing, Ultrasonics, Microfluidizers, Membrane Emulsification). In Encyclopedia of Dairy Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 761–764. DOI: 10.1016/B978-0-12-374407-4.00226-0
- 32. Hussain, H., Truong, T., Bansal, N., Bhandari, B., 2017. The Effect of Manipulating Fat Globule Size on the Stability and Rheological Properties of Dairy Creams. Food Biophys., 12, 1–10. DOI: 10.1007/s11483-016- 9457-0
- 33. Hussong, J., Lindken, R., Pourquie, M., Westerweel, J., 2009. Numerical study on the flow physics of a T-shaped micro mixer. In Proceedings of the IUTAM Symposium on Advances in Micro- and Nanofluidics, Springer: Berlin/Heidelberg, Germany, 191–205. DOI: 10.1007/978-90- 481-2626-2_15
- 34.Innings, F., Trägårdh, C., 2005. Visualization of the drop deformation and break-up process in a high pressure disperser. Chem. Eng. Technol., 28, 882–891. DOI: 10.1002/ceat.200500080
- 35. ISO 707:2013., 2013. Milk and milk products. Guidance on Sampling. ISO Standards: Geneva, Switzerland. (accessed on 5 January 2024).
- 36. ISO 9622:2013., 2013. Milk and Liquid Milk Products. ISO Standards: Geneva, Switzerland. (accessed on 5 January 2024)
- 37. Ivanovs, S., Bulgakov, V., Kaletnik, H., Shymko, L., Kuvachov, V., Ihnatiev, Y. 2020. Experimental checking of mathematical models describing the functioning adequacy of bridge systems in agricultural track system. INMATEH-Agricultural Engineering. 62(3), 107-114. DOI: 10.35633/inmateh-62-11
- 38. Jiang, B., Shi, Y., Lin, G., Kong, D., Du, J., 2019. Nanoemulsion prepared by disperser: The CFD model research. J. Food Eng., 241, 105–115. DOI: 10.1016/j.jfoodeng.2018.08.014
- 39. Labenko, O., Sobchenko, T., Hutsol, T., Cupiał, M., Mudryk, K., Kocira, A., Pavlenko-Didur, K., Klymenko, O., Neuberger, P., 2022. Project Environment and Outlook within the Scope of Technologically Integrated European Green Deal in EU and Ukraine. Sustainability 14, 8759. DOI: 10.3390/su14148759
- 40. Lee, C., Chang, C., Wang, Y., Fu, L., 2011. Microfluidic Mixing: A Review. Ijms, 12 (5), 3263–3287. doi:10.3390/ijms12053263
- 41. Liao, Y., Lucas, D., 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci., 64, 3389– 3406. DOI: 10.1016/J.CES.2009.04.026
- 42. Lobasov, A., Minakov, A., 2018. Analyzing mixing quality in a T-shaped micromixer for different fluids properties through numerical simulation. Сhemical Eng. Process., 124, 11–23. DOI: 10.1016/J.CEP.2017.11.004
- 43. Lobasov, A., Minakov, A., Rudyak, V., 2018. Izuchenie rezhimov smesheniya zhidkosti i nanozhidkosti v T-obraznom mikromiksere. Inzhenerno Fiz. Zhurnal, 91, 133–145
- 44. Malkina, V., Kiurchev, S., Hutsol, T., Verkholantseva,V., Kiurcheva, L., Miroshnichenko, M., Biliuk, M., Pidlisnyj,V., Gürgülü, H., Kowalczyk, Z., 2022. Optimization of Parameters of a Vibroconveyor System for Infrared Drying of Soy. Agricultural Engineering, 26(1), 157-166. DOI:10.2478/agriceng-2022-0013
- 45. Minakov, A., Rudyak, V., Gavrilov, A., Dekterev, A., 2012. Smeshenie v mikromiksere T-Tipa pri umerennykh chislakh Rejnol'dsa. Teplofiz. I Ajeromekhanika, 19, 577–587.
- 46. Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M., 2014. Ultrasonic techniques for the milk production industry. Meas. J. Int. Meas. Confed. MSRMD, 58, 93–102. DOI: 10.1016/j.measurement.2014.08.022
- 47. Morales, J., Watts, A., McConville, J., 2016. Mechanical particle-size reduction techniques. AAPS Adv. Pharm. Sci., 22, 165–213. DOI: 10.1007/978-3-319-42609-9_4
- 48. Panchenko, А., Voloshina, А., Panchenko, I., Titova, O., Caldare, A. 2020. Design of Hydraulic Mechatronic Systems with Specified Output Characteristics. Advances in Design, Simulation and Manufacturing IІI. DSMIE 2020. Lecture Notes in Mechanical Engineering., Springer, Cham, 42-51. DOI: 10.1007/978-3-030-50491-5_5
- 49. Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T., Saeys, W., 2020. Milk homogenization monitoring: Fat globule size estimation from scattering spectra of milk. Innov. Food Sci. Emerg. Technol., 60, 102311. DOI: 10.1016/j.ifset.2020.102311
- 50. Rayner, M., Dejmek, P., 2015. Engineering Aspects of Emulsification and Homogenization in the Food Industry; CRC Press, Taylor & Francis Group, London, UK, p. 322. ISBN 9781466580435. DOI: 10.1201/b18436
- 51. Roudgar, M., Brunazzi, E., Galletti, C., Mauri, R., 2012. Numerical study of split T-micromixers. Chem. Eng. Technol., 35, 1291–1299. DOI: 10.1002/CEAT.201100611
- 52. Samoichuk, K., Kovalyov, A., Fuchadzhy, N., Hutsol, T., Jurczyk, M.; Pająk, T.; Banaś, M.; Bezaltychna, O.; Shevtsova, A. 2023. Energy Costs Reduction for Dispersion Using a Jet-Slot Type Milk disperser. Energies, 16, 2211. DOI: 10.3390/en16052211
- 53. Samoichuk, K., Kovalyov, A., Oleksiienko, V., Palianychka, N., Dmytrevskyi, D., Chervonyi, V., Horielkov, D., Zolotukhina, I., Slashcheva, A., 2020. Determining the quality of milk fat dispersion in a jetslot milk disperser. East. Eur. J. Enterp. Technol., 5, 16–24. DOI: 10.15587/1729-4061.2020.213236
- 54. Samoichuk, K., Zahorko, N., Oleksiienko, V., Petrychenko, S., 2019. Generalization of Factors of Milk Homogenization. In Modern Development Paths of Agricultural Production; Springer: Cham, Switzerland, 192–198. DOI: 10.1007/978-3-030-14918-5_21
- 55. Samoichuk, K., Zhuravel, D., Palyanichka, N., Oleksiienko, V., Petrychenko, S., 2020. Improving the quality of milk dispersion in a counter-jet homogenizer. Potravinarstvo Slovak Journal of Food Sciences, 14, 633– 640. DOI: 10.5219/1407
- 56. Samoichuk, К., Kovalyov, А., Oleksiienko, V., Palianychka, N., Dmytrevskyi, D., Chervonyi, V., Horielkov, D., Zolotukhina, I., Slashcheva, A., 2020. Elaboration of the research method for milk dispersion in the jet slot type disperser. EUREKA Life Sci., 5, 51–59. DOI: 10.21303/2504-5695.2020.001436
- 57. Samojchuk, K., Kovalyov, O., Palyanichka, N., Kolodіj, O., Lebіd', M., 2019. Eksperimental'nі doslіdzhennya parametrіv struminnogo gomogenіzatora moloka z rozdіl'noyu podacheyu vershkіv shchіl'ovogo tipu. Pr. TDATU, 19, 117–129. DOI: 10.31388/2078-0877-19-2-117-129
- 58. Tartar, L., 2009. The General Theory of Homogenization; Lecture Notes. Springer: Berlin/Heidelberg, Germany, p. 470.
- 59. Thomas, S., Ameel, T., Guilkey, J., 2010. Mixing kinematics of moderate Reynolds number flows in a T-channel. Phys. Fluids, 22, 031601. DOI: 10.1063/1.3283063
- 60. Valencia‐Flores, D., Hernández‐Herrero, M., Guamis, B., Ferragut, V., 2013. Comparing the Effects of Ultra‐High‐Pressure Homogenization and Con ventional Thermal Treatments on the Microbiological, Phys, and Chem Quality of Almond Beverages. J. Food Sci., 78, 199–205. DOI: 10.1111/1750 3841.12029
- 61. Vladisavljevic, G., Al Nuumani, R., Nabavi, S., 2017. Microfluidic production of multiple emulsions. Micromachines, 8, 75. DOI: 10.3390/mi8030075
- 62. Voloshina, A., Panchenko, A., Panchenko, I., Zasiadko, A., 2019. Geomet rical parameters for distribution systems of hydraulic machines. In: Na dykto V. (eds) Modern Development Paths of Agricultural Production. Springer, Cham, 323-336. DOI: 10.1007/978-3-030-14918-5_34
- 63. Wang, X., Wang, Y., Li, F., Li, L., Ge, X., Zhang, S., Qiu, T., 2020. Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chem. Eng. Sci., 226, 115838. DOI: 10.1016/j.ces.2020.115838
- 64. Ward, K., Fan, Z. H., 2015. Mixing in Microfluidic Devices and Enhancement Methods. J. Micromech. Microeng., 25 (9), 94001–94017. DOI: 10.1088/0960-1317/25/9/094001
- 65. Yagodnitsyna, A., Kovalev, A., Bilsky, A., 2016. Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction. Chem. Eng. J., 303, 547–554. DOI: 10.1016/j.cej.2016.06.023
- 66. Yanga, B., Zhua, Z., Gaoa, M., Yana, X., Zhua, X., Guo, W., 2020. A portable detector on main compositions of raw and homogenized milk. Comput. Electron. Agric., 177, 105668. DOI: 10.1016/j.compag.2020.105668
- 67. Yermakov, S., Hutsol, T., Glowacki, Sz., Hulevskyi, V., Pylypenko, V., 2021. Primary assessment of the degree of torrefaction of biomass agricultural crops. Environment. Technology. Rezekne, Latvia. DOI: 10.17770/etr2021vol1.6597.
- 68. Yong, A., Islam, M., Hasan, N., 2017. The Effect of pH and High-Pressure Homogenization on Droplet Size. Sigma J. Eng. Nat. Sci., 35, 1–22. DOI: 10.26776/IJEMM.02.04.2017.05
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71b0872a-efb1-4c80-8534-9f6defeec9c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.