PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Surface characteristics and ion leaching of 17-4 precipitation hardening stainless steel orthodontic brackets exposed to salt water and fluoride-based oral rinses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this laboratory study is to analyze, compare, and contrast qualitatively and quantitatively the surface roughness and metal ion leaching of two brands of orthodontic precipitation hardening 17-4 stainless steel (SS) brackets exposed to salt water and commercially available NaF-based oral rinses. A total of 60 SS maxillary premolar orthodontic brackets from two brands (Victory Series™, and Mini Diamond Twin™) were assigned to three groups (n = 10). The brackets were immersed in NaF-containing oral rinses (Listerine™ or Orex™), or salt water rinse for 28 days. Microhardness (Vickers hardness number, VHN) and surface roughness (Ra) before and after immersion in oral rinses were evaluated using a non-contact optical profilometer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the ion leaching into oral rinses. The local surface changes and elemental analysis of corrosion-free and corrosion spots after immersion were assessed and compared using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDS). Data analysis was performed using Statistical Package for the Social Sciences software using one-way analysis of variance, the Tukey’s post hoc test, and paired t-test (α = 0.05). The VHN of the brackets was significantly different at baseline and after immersion in the oral rinses (P < 0.05). The mean Ra before immersion in oral rinses for the two groups of the orthodontic brackets was significantly different (P < 0.01). The brackets immersed in salt water for Victory™ (0.65 ± 0.07 µm) and Mini Diamond™ (0.76 ± 0.08 µm) demonstrated significantly lower roughness values than NaF-based oral rinses (Listerine™ or Orex™) (P < 0.01). However, the difference in Rabetween the bracket systems was significant only for Listerine™ and Orex™ rinses (P > 0.01). The ICP-MS analysis showed significant differences for Cu and Zn ions in Listerine™ and all ions except Ni for salt water oral rinses. On the contrary, the comparison between the bracket systems for the metal ions showed no significant difference in the Orex™ group (P > 0.05). Salt water oral rinses demonstrated significantly fewer surface changes than NaF-containing oral rinses. The leaching of the metal ions was significant for Fe2+ and Cr3+ but did not vary considerably for Ni2+ between the evaluated oral rinses.
Wydawca
Rocznik
Strony
113--126
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
  • Dental Biomaterials Research Chair, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
  • Dental Health Department, College of Applied Medical Sciences, King , Saudi Arabia
autor
  • Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
  • Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
  • Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
  • Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh, Saudi Arabia
  • Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
Bibliografia
  • [1] Alsarani, M., Saud Alaida, W., Ajwa, N., Alaqeel, S., Almutairi, N.M., Alanazi, K.J., et al., Influence of prophylactic fluoride agents on the color changes and surface roughness of polymer and rhodium coated nickel-titanium orthodontic archwires, Polimery, 2023, 68(11–12): 607–616. doi:10.14314/polimery.2023.11.4
  • [2] Asiry, M.A., AlShahrani, I., Almoammar, S., Durgesh, B.H., Al Kheraif, A.A., Hashem, M.I., Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires, Mater. Res. Exp., 2018, 5(2): 026511. doi:10.1088/2053-1591/aaabe5
  • [3] Fróis, A., Santos, A.C., Louro, C.S., Corrosion of fixed orthodontic appliances: causes, concerns, and mitigation strategies, Metals, 2023, 13(12): e1955. doi:10.3390/met13121955
  • [4] Suryawanshi, H., Hande, A., Dasari, A.K., Aileni, K.R., AlZoubi, I., Patil, S.R., Metal ion release from orthodontic appliances: Concerns regarding potential carcinogenic effects, Oral Oncol. Rep., 2024, 10: 100309. doi:10.1016/j.oor.2024.100309
  • [5] Colmant, M., Fawaz, P., Stanton, K., MacMichael, O., Vande Vannet, B., Microhardness and chemical composition of different metallic brackets: An in vitro study, Dent. J., 2023, 11(9): e202. doi:10.3390/dj11090202
  • [6] Doomen, R.A., Nedeljkovic, I., Kuitert, R.B., Kleverlaan, C.J., Aydin, B., Corrosion of orthodontic brackets: qualitative and quantitative surface analysis, Angle Orthod., 2022, 92(5): 661–668. doi:10.2319/072321-584.1
  • [7] Yanisarapan, T., Thunyakitpisal, P., Chantarawaratit P.O., Corrosion of metal orthodontic brackets and archwires caused by fluoride-containing products: Cytotoxicity, metal ion release and surface roughness, Orthod. Waves, 2018, 77(2): 79–89. doi:10.1016/j.odw.2018.02.001
  • [8] Tahmasbi, S., Ghorbani, M., Masudrad, M., Galvanic corrosion of and ion release from various orthodontic brackets and wires in a fluoride-containing mouthwash, J. Dent. Res. Dent Clin. Dent Prospect., 2015, 9(3): 159–165. doi:10.15171/joddd.2015.030
  • [9] Tahmasbi, S., Sheikh, T., Hemmati, Y.B., Ion release and galvanic corrosion of different orthodontic brackets and wires in Artificial Saliva, J. Contemp. Dent. Pract., 2017, 18(3): 222–227
  • [10] Novianti, S., Siregar, E., Anggani, H.S., Corrosion resistance of stainless steel brackets after thermal recycling by direct flaming, Pesqui. Bras. Odontopediatria Clín. Integr., 2019, 19: e4990. doi:10.4034/PBOCI.2019.191.98
  • [11] Garcia-Cabezon, C., Hernández, C.G., Castro-Sastre, M.A., Fernandez-Abia, A.I., Rodriguez-Mendez, M.L., Martin-Pedrosa, F., Heat treatments of 17-4 PH SS processed by SLM to improve its strength and biocompatibility in biomedical applications, J. Mater. Res. Technol., 2023, 26: 3524–3543. doi:10.1016/j.jmrt.2023.08.104
  • [12] Mutlu, I., Oktay, E., Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments, Mater. Sci. Eng: C., 2013, 33(3): 1125–1131. doi:10.1016/j.msec.2012.12.004
  • [13] Prasetyadi, T., Irawan, B., Purwanegara, M., Suharno, B., Supriadi, S., Cytotoxicity of ions released from 17-4 precipitation hardening stainless steel orthodontic brackets in artificial saliva, Int. J. Appl. Pharm., 2018, 9:71. doi:10.22159/ijap.2017.v9s2.17
  • [14] Oh, K.T., Choo, S.U., Kim, K.M., Kim, K.N., A stainless steel bracket for orthodontic application, Eur. J. Orthod., 2005, 27(3): 237–244. doi:10.1093/ejo/cji005
  • [15] Nahidh, M., Yassir, Y.A., Marrapodi, M.M., Di Blasio, M., Ronsivalle, V., Cicciù, M., et al., A scanning electron microscopy investigation of the precision of three orthodontic bracket slot systems, BMC Oral Health, 2024, 24(1): 221. doi:10.1186/s12903-023-03841-y
  • [16] Suharno, B., Suharno, L., Saputro, H., Irawan, B., Prasetyadi, T., Ferdian, D., et al., Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process, Radon Dhelika, Y.W., Ramahdita, G., Wulan, P.P.D.K., eds., American Institute of Physics Inc., Bali, Indonesia, 2018, p. 020009
  • [17] Zinelis, S., Annousaki, O., Makou, M., Eliades, T., Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM), Angle Orthod., 2005, 75(6): 1024–1031. doi:10.1043/0003-3219(2005)75[1024: mcoobp]2.0.co;2
  • [18] Schiff, N., Dalard, F., Lissac, M., Morgon, L., Grosgogeat, B., Corrosion resistance of three orthodontic brackets: a comparative study of three fluoride mouthwashes, Eur. J. Orthod., 2005, 27(6): 541–549. doi:10.1093/ejo/cji050
  • [19] Brookes, Z.L.S., McCullough, M., Kumar, P., McGrath, C., Mouthwashes: Implications for practice, Int. Dent. J., 2023, 73: S98–S101. doi:10.1016/j.identj.2023.08.013
  • [20] Ren, X., Zhang, Y., Xiang, Y., Hu, T., Cheng, R., Cai, H., The efficacy of mouthwashes on oral microorganisms and gingivitis in patients undergoing orthodontic treatment: a systematic review and meta-analysis, BMC Oral Health, 2023, 23(1): 204. doi:10.1186/s12903-023-02920-4
  • [21] Ehrami, E., Omrani, A., Feizbakhsh, M., Effects of two fluoride mouthwashes on surface topography and frictional resistance of orthodontic wires, Front. Dent., 2022, 19: 21. doi:10.18502/fid.v19i21.9968
  • [22] Geramy, A., Hooshmand, T., Etezadi, T., Effect of sodium fluoride mouthwash on the frictional resistance of orthodontic wires, J. Dent. (Tehran, Iran.), 2017, 14(5): 254–258
  • [23] Collins, J.R., Veras, K., Hernández, M., Hou, W., Hong, H., Romanos, G.E., Anti-inflammatory effect of salt water and chlorhexidine 0.12% mouthrinse after periodontal surgery: a randomized prospective clinical study, Clin. Oral Investig., 2021, 25(7): 4349–4357. doi:10.1007/s00784-020-03748-w
  • [24] Kim, J.O., Kim, N.C., Effects of 4% hypertonic saline solution mouthwash on oral health of elders in long term care facilities, J. Korean Acad. Nurs., 2014, 44(1): 13–20
  • [25] Nokam Kamdem, G.S.J., Toukam, M., Ntep Ntep, D.B., Kwedi, K.G.G., Zilefac Brian, N., Tamo Fokam, S., et al., Comparison of the effect of saline mouthwash versus chlorhexidine on oral flora, Adv. Oral Maxillofac. Surg., 2022, 6: 100273. doi:10.1016/j.adoms.2022.100273
  • [26] Alavi, S., Farahi, A., Effect of fluoride on friction between bracket and wire, Dent. Res. J., 2011, 8: S37–S42. doi:10.4103/1735-3327.95902
  • [27] Alfouzan, A., Alnouwaisar, A., Alazzam, N., Al-Otaibi, H., Labban, N., Alswaidan, M., et al., Surface roughness analysis of prepolymerized CAD/CAM dental acrylic resins following combined surface treatments, Mater. Sci. -Poland, 2021, 39(2): 209–218
  • [28] Durgesh, B., Alshehri, A., Alsadon, O., Alaqeel, S., Alageel, O., Alsarani, M., et al., Coffee staining and simulated brushing induced color changes and surface roughness of 3D-printed orthodontic retainer material, Polymers (Basel), 2023, 15(9): e2164. doi:10.3390/polym15092164
  • [29] Kosasang, O., Wongkaewmoon, M., Chumphongphan, S., Effect of aging heat treatment on corrosion behavior and corrosion kinetics of 17-4 PH stainless steel in artificial saliva. Sains Malays., 2021, 50: 849–858. doi:10.17576/jsm-2021-5003-25
  • [30] Arango, S., Ossa, C., Stainless steel: Material facts for the orthodontic practitioner. Rev. Nac. Odontol., 2015, 11: 71–82. doi:10.16925/od.v11i20.751.
  • [31] Aravinth, V., Aswath Narayanan, M.B., Ramesh Kumar, S.G., Selvamary, A.L., Sujatha, A., Comparative evaluation of salt water rinse with chlorhexidine against oral microbes: A school-based randomized controlled trial, J. Indian. Soc. Pedod. Prev. Dent., 2017, 35(4): 319–326. doi:10.4103/JISPPD.JISPPD_299_16
  • [32] Mory, N., Cascos, R., Celemín-Viñuela, A., Gómez-Polo, C., Agustín-Panadero, R., Gómez-Polo, M., Comparison of the surface roughness of CAD/CAM metal-free materials used for complete-arch implant-supported prostheses: an in vitro study, Biomedicines, 2023, 11(11): e3036. doi:10.3390/biomedicines11113036
  • [33] Amini, F., Harandi, S., Mollaei, M., Rakhshan, V., Effects of fixed orthodontic treatment using conventional versus metal-injection molding brackets on salivary nickel and chromium levels: a double-blind randomized clinical trial, Eur. J. Orthod., 2015, 37(5): 522–530. doi:10.1093/ejo/cju079
  • [34] Lin, M.C., Lin, S.C., Lee, T.H., Huang, H.H., Surface analysis and corrosion resistance of different stainless steel orthodontic brackets in artificial saliva, Angle Orthod., 2006, 76(2): 322–329. doi:10.1043/0003-3219(2006)076[0322: saacro]2.0.co;2
  • [35] Pulikkottil, V.J., Chidambaram, S., Bejoy, P.U., Femin, P.K., Paul, P., Rishad, M., Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study, J. Pharm. Bioallied Sci., 2016, 8(Suppl 1): S96–S99. doi:10.4103/0975-7406.192032
  • [36] Guo, C., Shi, S., Dai, H., Yu, J., Chen X., Corrosion mechanisms of nickel-based alloys in chloride-containing hydrofluoric acid solution, Eng. Fail. Anal., 2022, 140: e106580. doi:10.1016/j.engfailanal.2022.106580
  • [37] Chantarawaratit, P.O., Yanisarapan T., Exposure to the oral environment enhances the corrosion of metal orthodontic appliances caused by fluoride-containing products: Cytotoxicity, metal ion release, and surface roughness, Am. J. Orthod. Dentofac. Orthop., 2021, 160(1): 101–112. doi:10.1016/j.ajodo.2020.03.035
  • [38] Wijesinghe, D.M.L., Gunathilake, W.S.S., Weerasekera WBMCRD, Jayasinghe UJMAL. Corrosion analysis of orthodontic brackets and arch wires – An in vitro study, Ceylon J. Sci., 2024, 53: 75–85. doi:10.4038/cjs.v53i1.8316
  • [39] Brownlie, F., Hodgkiess, T., Pearson, A., Galloway, A. Electrochemical evaluation of the effect of different NaCl concentrations on low alloy- and stainless steels under corrosion and erosion-corrosion conditions, Corros. Mater. Degrad., 2022, 3(1): 101–126. doi:10.3390/cmd3010006
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71ab5853-1096-4048-89d7-ec8ac01ca8a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.