PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the effective elastic parameters in the discrete element model of granular material by the triaxial compression test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The general objective of the present paper is to improve the understanding of micromechanical mechanisms in granular materials and their representation in numerical models. Results of numerical investigations on micro–macro relationships in the discrete element model of granular material are presented. The macroscopic response is analysed in a series of simulations of the triaxial compression test. The numerical studies are focused on the influence of microscopic parameters on the initial response. The effect of the contact stiffness and friction coefficient on the effective elastic moduli is investigated. Numerical results are compared with the analytical estimations based on the kinematic Voigt's hypothesis as well as with selected numerical results of other authors. The comparisons show that a better agreement between the numerical and analytical results is observed for particle assemblies with higher coordination numbers. Higher coordination numbers are related to more compact specimens and for a given specimen can be associated with low values of the contact stiffness and a higher confining pressure.
Rocznik
Strony
64--75
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius, Lithuania
Bibliografia
  • [1] P. Cundall, O. Strack, A discrete numerical method for granular assemblies, Geotechnique 29 (1979) 47–65.
  • [2] L. Widuliński, J. Kozicki, J. Tejchman, Numerical simulations of triaxial test with sand using DEM, Archives of Hydro- Engineering and Environmental Mechanics 56 (2009) 149–171.
  • [3] J. Plassiard, N. Belheine, F. Donze, A spherical discrete element model: calibration procedure and incremental response, Granular Matter 11 (2009) 293–306.
  • [4] V. Murthy, Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering, CRC Press, 2002.
  • [5] L. Wu, F. Qu, Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling, Journal of Central South University of Technology 16 (2009) 1028–1033.
  • [6] R. Balevičius, I. Sielamowicz, Z. Mróz, R. Kačianauskas, Effect of rolling friction on wall pressure, discharge velocity and outflow of granular material from a flat-bottomed bin, Particuology 10 (2012) 672–682.
  • [7] I. Sielamowicz, R. Balevičius, Experimental and computational analysis of granular material flow in model silos, IFTR Reports on Fundamental Technological Research (1/2012), 2012.
  • [8] C. Martin, D. Bouvard, S. Shima, Study of particle rearrangement during powder compaction by the Discrete Element Method, Journal of the Mechanics and Physics of Solids 51 (2003) 667–693.
  • [9] J. Rojek, F. Zarate, C.A. de Saracibar, C. Gilbourne, P. Verdot, Discrete element modelling and simulation of sand mould manufacture for the lost foam process, International Journal for Numerical Methods in Engineering 62 (2005) 1421–1441.
  • [10] J. Rojek, E. Oñate, C. Labra, H. Kargl, Discrete element simulation of rock cutting, International Journal of Rock Mechanics and Mining Sciences 48 (2011) 996–1010.
  • [11] D. Potyondy, P. Cundall, A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences 41 (2004) 1329–1364.
  • [12] T. Wu, I. Temizer, P. Wriggers, Computational thermal homogenization of concrete, Cement and Concrete Composites 35 (2013) 59–70.
  • [13] L. Rothenburg, R.J. Bathurst, Micromechanical features of granular materials with planar elliptical particles, Geotechnique 42 (1) (1992) 79–95.
  • [14] H. Tao, W. Zhong, B. Jin, Flow behavior of non-spherical particle flowing in hopper, Frontiers in Energy 3 (2014) 315–321.
  • [15] P. Digby, The effective elastic moduli of porous granular rocks, Journal of Applied Mechanics 48 (1981) 803–808.
  • [16] K. Walton, The effective elastic moduli of a random packing of spheres, Journal of Mechanics and Physics of Solids 35 (1987) 213–226.
  • [17] R. Bathurst, L. Rothenburg, Micromechanical aspects of isotropic granular assemblies with linear contact interactions, ASME Journal of Applied Mechanics 55 (1988) 17–23.
  • [18] C. Chang, Micromechanical modelling of constitutive equation for granular material, in: J. Jenkins, M. Satake (Eds.), Micromechanics of Granular Materials, Elsevier Science Publishers, 1988 271–278.
  • [19] C. Liao, T. Chang, D. Young, Stress–strain relationship for granular materials based on the hypothesis of best fit, International Journal of Solids and Structures 34 (1997) 4087–4100.
  • [20] C. Chang, S. Chao, Y. Chan, Estimates of elastic moduli for granular material with anisotropic random packing structure, International Journal of Solids and Structures 32 (14) (1995) 1989–2008.
  • [21] J. Jenkins, D. Johnson, L.L. Ragione, H. Makse, Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres, Journal of the Mechanics and Physics of Solids 53 (2005) 197–225.
  • [22] S. Luding, Micro–macro transition for anisotropic, aperiodic, granular materials, International Journal of Solids and Structures 41 (2004) 5821–5836.
  • [23] N. Kruyt, I. Agnolin, S. Luding, L. Rothenburg, Micromechanical study of elastic moduli of loose granular materials, Journal of the Mechanics and Physics of Solids 58 (2010) 1286–1301.
  • [24] C. Guan, J. Qi, N. Qiu, G. Zhao, Q. Yang, X. Bai, C. Wang, Macroscopic Young's elastic modulus model of particle packing rock layers, Open Journal of Geology 2 (2012) 198–202.
  • [25] C. Chang, Constitutive modeling for granular material under finite strains with particle slidings and fabric changes, Tech. rep. Final Report on Research under Grant No. AFOSR archives of civila and mechanical engineering 16 (2016) 64 – 7574 89 0313, Department of Civil Engineering, University of Massachusetts, 1992.
  • [26] I. Agnolin, J. Roux, Internal states of model isotropic granular packings. III. Elastic properties, Physical Review E 76 (2007) 061304.
  • [27] I. Agnolin, N. Kruyt, On the elastic moduli of two-dimensional assemblies of disks: relevance and modeling of fluctuations in particle displacements and rotations, Computers and Mathematics with Applications 55 (2008) 245–256.
  • [28] H. Makse, N. Gland, D. Johnson, L. Schwartz, Why effective medium theory fails in granular materials, Physical Review Letters 83 (1999) 5070–5073.
  • [29] J. Ma, I. Temizer, P. Wriggers, Random homogenization analysis in linear elasticity based on analytical bounds and estimates, International Journal of Solids and Structures 48 (2011) 280–291.
  • [30] C. Coetzee, D. Els, Calibration of discrete element parameters and the modeling of silo discharge and bucket filling, Computers and Electronics in Agriculture 65 (2009) 198–212.
  • [31] Y. Yan, S. Ji, Discrete element modeling of direct shear tests for a granular material, International Journal for Numerical and Analytical Methods in Geomechanics 34 (2010) 978–990.
  • [32] R. Kačianauskas, A. Maknickas, A. Kačeniauskas, D. Markauskas, R. Balevičius, Parallel discrete element simulation of poly-dispersed granular material, Advances in Engineering Software 41 (2010) 52–63.
  • [33] J. Kozicki, J. Tejchman, Z. Mróz, Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM, Granular Matter 14 (2012) 457–468.
  • [34] F. Calvetti, G. Viggiani, C. Tamagnini, A numerical investigation of the incremental behavior of granular material soils, Rivista Italiana di Geotecnica 3 (2003) 11–29.
  • [35] CIMNE, Dempack: explicit nonlinear dynamic analysis by the finite and discrete element method. Available at: www. cimne.upc.edu/dempack.
  • [36] E. Oñate, J. Rojek, Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Computer Methods in Applied Mechanics and Engineering 193 (2004) 3087–3128.
  • [37] J. Rojek, C. Labra, O. Su, E. Oñate, Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters, International Journal of Solids and Structures 49 (2012) 1497–1517.
  • [38] E. Kuhl, G.A. D'Addetta, H.J. Herrmann, E. Ramm, A comparison of discrete granular material models with continuous microplane formulations, Granular Matter 2 (2000) 113–121.
  • [39] C. Labra, E. Oñate, High density sphere packing for discrete element method simulations, Communications in Numerical Methods in Engineering 25 (7) (2009) 837–849.
  • [40] Y. Wan, Discrete element method in granular material simulations, Institute of Fraunhofer ITWM Kaiserslautern/ Technical University of Kaiserslautern, 2011 (Ph.D. thesis).
  • [41] S. Mesarovic, J. Padbidri, B. Muhunthan, Micromechanics of dilatancy and critical state in granular matter, Geótechnique Letters 2 (2012) 61–66.
  • [42] S. Antony, N. Kruyt, Role of interparticle friction and particle- scale elasticity in the shear-strength mechanism of three-dimensional granular media, Physical Review E 79 (2009) 031308.
  • [43] M. Schopfer, S. Abe, C. Childs, J.J. Walsh, The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modeling, International Journal of Rock Mechanics and Mining Sciences 46 (2009) 250–261.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71a8c1dc-59e5-4e32-bac3-d3496a0882c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.