PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of WO3 on the morphology and photodegradation of dimethyl phthalate of TiO2 nanotube array photoelectrode

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
WO<sub>3</sub> modified TiO<sub>2</sub> nanotube array (WO<sub>3</sub>/TNAs) photoelectrodes were fabricated via electrochemical deposition on TNAs/Ti photoelectrodes. The morphology and structure of WO<sub>3</sub>/TNAs photoelectrodes were investigated by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The effects of deposition potential, deposition duration, Na<sub<2</sub>WO<sub>4</sub> concentration, and calcination temperature on the morphology and the photocatalytic activity were investigated. The results showed that suitable amounts of WO<sub>3</sub> promoted the photocatalytic activity of TNAs photoelectrodes for the degradation of dimethyl phthalate (DMP). The optimal conditions for the fabrication of WO<sub>3</sub>/TNAs photoelectrodes were as follows: deposition voltage 3.0 V, 10 min deposition duration, 0.01 mol/dm<sup>3</sup> Na<sub>2</sub>WO<sub>4</sub> concentration, 1.5 cm electrode gap, and 550 °C annealing temperature. The degradation rate of DMP reached 77% after 60 min of illumination by WO<sub>3</sub>/TNAs photoelectrode. Additionally, WO<sub>3</sub>/TNA photoelectrodes possessed superb stability for maintaining a high DMP degradation efficiency at more than 75% after 10 times of successive use with 60 min irradiation for each cycle. The enhancement of photocatalytic performance by the efficient combination of WO<sub>3</sub> with TNAs would provide a theoretical basis for the practical application of WO<sub>3</sub>/TNA photoelectrodes in water treatment.
Rocznik
Strony
129--139
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • The Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266003, China
  • Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultura1 University, Qingdao 266109, China
autor
  • Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultura1 University, Qingdao 266109, China
autor
  • College of Science and Information, Qingdao Agricultura1 University, Qingdao 266109, China
autor
  • Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultura1 University, Qingdao 266109, China
autor
  • The Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266003, China
Bibliografia
  • [1] HUNG C.H., YUAN C., LI H.W., Photodegradation of diethyl phthalate with PANi/CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight-effect of synthesized method and pH, J. Hazard. Mater., 2017, 322, 243.
  • [2] CHANG C.F., MAN C.Y., Magnetic photocatalysts of copper phthalocyanine-sensitized titania for the photodegradation of dimethyl phthalate under visible light, Colloid. Surf. A, 2014, 441, 255.
  • [3] CUI H., LIANG Z., ZHANG J.Z., LIU H., SHI J., Enhancement of photocatalytic activity of TiO2/carbon aerogel based on hydrophilic secondary pore structure, RSC Adv., 2016, 6 (72), 68416.
  • [4] WANG Y., LIU Y., LIU T., SONG S., GUI X., LIU H., TSIAKARAS P., Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode, Appl. Catal. B: Environ., 2014, 156–157, 1.
  • [5] SOUZA F.D., SAEZ C., CANIZARES P., MOTHEO A.D., RODRIGO M., Electrochemical removal of dimethyl phthalate with diamond anodes, J. Chem. Technol. Biotechnol., 2014, 89 (2), 282.
  • [6] WANG J., WANG F., YAO J., WANG R., YUAN H., MASAKORALA K., CHOI M.M.F., Adsorption and desorption of dimethyl phthalate on carbon nanotubes in aqueous copper(II) solution, Colloid. Surf. A, 2013, 417, 47.
  • [7] XU Z., CHENG L., SHI J., LU J., ZHANG W., ZHAO Y., LI F., CHEN M., Kinetic study of the removal of dimethyl phthalate from an aqueous solution using an anion exchange resin, Environ. Sci. Poll. Res., 2014, 21 (10), 6571.
  • [8] XU L.J., CHU W., GRAHAM N., A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process, Ultrason. Sonochem., 2013, 20 (3), 892.
  • [9] SOUZA F.L., SAEZ C., CANIZARES P., MOTHEO A. J., RODRIGO M.A., Sonoelectrolysis of wastewaters polluted with dimethyl phthalate, Ind. Eng. Chem. Res., 2013, 52 (28), 9674.
  • [10] ZHENG L., HAN S., LIU H., YU P., FANG X., Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances, Small, 2016, 12 (11), 1527.
  • [11] ESKANDARLOO H., HASHEMPOUR M., VICENZO A., FRANZ S., BADIEI A., BEHNAJADY M.A., BESTETTI M., High-temperature stable anatase-type TiO2 nanotube arrays. A study of the structure–activity relationship Appl. Catal. B: Environ., 2016, 185, 119.
  • [12] XIN Y.J., LIU H.L., HAN L., ZHOU Y.B., Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes, J. Hazard. Mater. 2011, 192 (3), 1812.
  • [13] CAI J., HUANG J., GE M., IOCOZZIA J., LIN Z.Q., ZHANG K.Q, LAI Y.K., Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors, Small, 2017, 13 (19), 1604240.
  • [14] JANUS M., MARKOWSKA-SZCZUPAK A., KUSIAK-NEJMAN E., MORAWSKI A.W., Disinfection of E. coli by carbon modified TiO2 photocatalysts, Environ. Prot. Eng., 2012, 38 (2), 89.
  • [15] SUN M., MA X., CHEN X., SUN Y., CUI X., LIN Y., A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties, RSC Adv., 2014, 4 (3), 1120.
  • [16] CHENG X.W., LIU H.L., CHEN Q.H., LI J.J., WANG P., Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac, J. Hazard. Mater. 254, 2013, 141.
  • [17] WANG Q., QIAO J., ZHOU J., GAO S., Fabrication of CuInSe2 quantum dots sensitized TiO2 nanotube arrays for enhancing visible light photoelectrochemical performance, Electrochim. Acta, 2015, 167, 470.
  • [18] ZHONG J.S., WANG Q.Y., ZHU X., CHEN D.Q., JI Z.G., Solvothermal synthesis of flower-like Cu3BiS3 sensitized TiO2 nanotube arrays for enhancing photoelectrochemical performance, J. Alloys Comp., 2015, 641, 144.
  • [19] FENG H., TRAN.T.T., CHEN L., YUAN L., CAI Q., Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO2 nanotube arrays, Chem. Eng. J., 2013, 215, 591.
  • [20] GAKHAR R., SMITH Y.R., MISRA M., CHIDAMBARAM D., Photoelectric performance of TiO2 nanotube array photoelectrodes sensitized with CdS 0.54 Se 0.46 quantum dots, Appl. Surf. Sci., 2015, 355, 1279.
  • [21] LU N., SU Y., LI J., YU H., QUAN X., Fabrication of quantum-sized CdS-coated TiO2 nanotube array with efficient photoelectrochemical performance using modified successive ionic layer absorption and reaction (SILAR) method, Sci. Bull., 2015, 60 (14), 1281.
  • [22] MOMENI M.M., GHAYEB Y., DAVARZADEH M., WO3 nanoparticles anchored on titania nanotube films as efficient photoanodes, Surf. Eng., 2015, 31, (4), 259.
  • [23] XIE H., QUE W., HE Z., ZHONG P., LIAO Y., WANG G., Preparation and photocatalytic activities of Sb2S3/TiO2 nanotube coaxial heterogeneous structure arrays via an ion exchange adsorption method, J. Alloys Comp., 2013, 550, 314.
  • [24] XIN Y., LIU H., LIU Y.,MA D.D., CHEN Q., Composition and photoelectrochemical properties of WO3/TNAs photoelectrodes fabricated by in situ electrochemical method, Electrochim. Acta, 2013, 104 (8), 308.
  • [25] WANG G., CHEN Q., XIN Y., LIU Y., ZANG Z., HU C., ZHANG B., Construction of graphene-WO3/TiO2 nanotube array photoelectrodes and its enhanced performance for photocatalytic degradation of dimethyl phthalate, Electrochim. Acta, 2016, 222, 1903
  • [26] BEHNAJADY M.A., ALAMDARI M. E., MODIRSHAHLA N., Investigation of the effect of heat treatment process on characteristics and photocatalytic activity of TiO2-UV100 nanoparticles, Environ. Prot. Eng., 2013, 39 (1), 33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71a7d694-3724-4e04-95d2-5cbd51f94c85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.