PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Cutting Tool Wear in the Milling Process of the Inconel 718 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on the wear of the cutting tool in the process of high feed milling and plunge milling of the Inconel 718 alloy. A specially designed milling head was used in the study, allowing both of the previously mentioned milling methods to be implemented with a single tool. Ceramic inserts CNGN120712 in versions CS300 and CW100 were used for the research. During the experiment, the values of cutting depth ap [mm], cutting width ae [mm] and feed per edge fz [mm/edge] were changed. The study was conducted under conditions of accelerated wear. The results show the tool life in individual tests using the parameter of the material volume predicted to be removed in the tool life cycle Gmax [cm3], obtained by third degree polynomial approximation.
Twórcy
  • Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Opole University of Technology, Faculty of Mechanical Engineering, ul. Prószkowska 76, 45-758 Opole, Poland
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Zhang, X., Chen, Y., Hu, J. Recent advances in the development of aerospace materials. Progress in Aerospace Sciences. 2018; 97: 22-34. https://doi.org/10.1016/j.paerosci. 2018.01.001.
  • 2. Zaleski, K., Skoczylas, A., Brzozowska, M. The effect of the conditions of shot peening the Inconel 718 nickel alloy on the geometrical structure of the surface. Advances in Science and Technology Research Journal. 2017; 11: 205-211. https://doi.org/10.12913/22998624/74180.
  • 3. De Bartolomeis, A., Newman, S., Jawahi,r I., Biermann, D., Shokrani, A. Future research directions in the machining of Inconel 718. Journal of Materials Processing Technology. 2021; 297: 117260. https://doi.org/10.1016/j.jmatprotec. 2021.117260.
  • 4. Wang, B., Liu, Z., Cai, Y., Luo, X., Ma, H., Song, Q., Xiong, Z. Advancements in material removal mechanism and surface integrity of high speed metal cutting: A review. International Journal of Machine Tools and Manufacture. 2021; 166: 103744. https://doi.org/10.1016/ j.ijmachtools.2021. 103744.
  • 5. Bławucki, S., Zaleski, K., Matuszak, J. 2016, Research of cutting forces during the milling of Inconel 718 superalloy in conditions of increased cutting speed. Mechanik. 2016; 8-9: 1090-1091. https://doi.org/10.17814/mechanik.2016.8-9.262.
  • 6. Potthoff, N., Wiederkehr, P. Fundamental investigations on wear evolution of machining Inconel 718. Procedia CIRP. 2021: 171-176. https://doi.org/10.1016/j.procir.2021.03.024.
  • 7. Maiyar, L.M., Ramanujam, R., Venkatesan, K., Jerald, J. Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Engineering. 2013; 64: 1276-1282, https://doi.org/10.1016/j.proeng. 2013.09.208.
  • 8. Saleem, M., Mumtaz, S. Face milling of Inconel 625 via wiper inserts: Evaluation of tool life and workpiece surface integrity. Journal of Manufacturing Processes. 2020; 56: 322-336. https://doi.org/10.1016/j.jmapro.2020.04.011.
  • 9. Xavior, M., Manohar, M., Jeyapandiarajan, P., Madhukar, P. Tool Wear Assessment during Machining of Inconel 718. Procedia Engineering. 2018; 174: 1000-1008. https://doi.org/10.1016/j.proeng.2017.01.252.
  • 10. Zetek, M., Česáková, I., Švarc, V. Increasing cutting tool life when machining Inconel 718. Procedia Engineering. 2014; 69: 1115-1124. https://doi.org/10.1016/j.proeng.2014.03.099.
  • 11. Parenti, P., Puglielli, F., Goletti, M., Annoni, M., Monno, M. An experimental investigation on Inconel 718 interrupted cutting with ceramic solid end mills. International Journal of Advanced Manufacturing Technology. 2021; 117: 2173-2184. https://doi.org/10.1007/s00170-021-07148-6.
  • 12. Grzesik, W., Niesłony, P., Habrat, W., Sieniawski, J., Laskowski, P. Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribology International. 2018; 118: 337-346. https://doi.org/10.1016/j.triboint.2017.10.005.
  • 13. Gueli M., Ma J., Cococcetta N., Pearl D., Jahan M.P. Experimental investigation into tool wear, cutting forces, and resulting surface finish during dry and flood coolant slot milling of Inconel 718. Procedia Manufacturing. 2021; 53: 236-245. https://doi.org/10.1016/j.promfg.2021.06.026.
  • 14. Niyas S., Winowlin Jappes J.T., Adamkhan M., Brintha N.C. An effective approach to predict the minimum tool wear of machining process of Inconel 718. Materials Today: Proceedings. 2022; 60: 1819-1834. https://doi.org/10.1016/j.matpr.2021.12.501.
  • 15. M’Saoubi R., Axinte D., Soo S.L., Nobel C., Attia H., Kappmeyer G., Engin S., Sim W-M. High performance cutting of advanced aerospace alloys and composite materials. CIRP Annals - Manufacturing Technology. 2015; 64(2): 557–580. https://doi.org/10.1016/j.cirp.2015.05.002.
  • 16. Bushlya V., Lenrick F., Bjerke A., Aboulfadl H., Thuvander M., Stahl J-E., M’Saoubi R. Tool wear mechanisms of PcBN in machining Inconel 718: Analysis across multiple length scale. CIRP Annals. 2021; 70(1): 73-78. https://doi.org/10.1016/j.cirp.2021.04.008.
  • 17. Ma Z., Xu X., Huang X., Ming W., An Q., Chen M. Cutting performance and tool wear of SiAlON and TiC-whisker-reinforced Si3N4 ceramic tools in side milling Inconel 718. Ceramics International. 2022; 48(3): 3096-3108. https://doi.org/10.1016/j.ceramint.2021.10.084.
  • 18. Finkeldei D., Sexauer M., Bleicher F. End milling of Inconel 718 using solid Si3N4 ceramic cutting tools. Procedia CIRP. 2019; 81: 1131-1135. https://doi.org/10.1016/j.procir. 2019.03.280.
  • 19. Sun J., Huang S., Ding H., Chen W. Cutting performance and wear mechanism of Sialon ceramic tools in high speed face milling GH4099. Ceramics International. 2020; 46(2): 1621-1630. https://doi.org/10.1016/j.ceramint.2019.09.134.
  • 20. Grguraš D., Kern M., Pušavec F. Suitability of the full body ceramic end milling tools for high speed machining of nickel based alloy Inconel 718. Procedia CIRP. 2018; 77: 630-633. https://doi.org/10.1016/j.procir.2018.08.190.
  • 21. Molaiekiya F., Aramesh M., Veldhuis S.C. Chip formation and tribological behavior in high-speed milling of IN718 with ceramic tools. Wear. 2020; 446-447: 203191. https://doi.org/10.1016/j.wear.2020.203191.
  • 22. Grguraš D., Kern M., Pušavec F. Cutting performance of solid ceramic and carbide end milling tools in machining of nickel based alloy Inconel 718 and stainless steel 316L. Advances in Production and Management. 2019; 14(1): 27-38. https://doi.org/10.14743/ apem2019.1.309.
  • 23. Zhuang K., Zhang X-M., Zhang X., Ding H. Force Prediction in Plunge Milling of Inconel 718. Conference: Proceedings of the 5th international conference on Intelligent Robotics and Applications. 2012; 2: 255-263. https://doi.org/10.1007/978-3-642-33515-0_26.
  • 24. Zhaopeng H., Dong G., Fan Y., Han R. New observations on tool wear mechanism in dry machining Inconel 718. International Journal of Machine Tools and Manufacture. 2011; 51(12): 973-979. https://doi.org/10.1016/j.ijmachtools.2011.08.018.
  • 25. Felusiak-Czyryca A., Madajewski M., Twardowski P., Wiciak-Pikuła M. Cutting forces during Inconel 718 orthogonal turn-milling. Materials. 2021; 14(20): 6152. https://doi.org/10.3390/ma14206152.
  • 26. Szablewski P., Dobrowolski T., Chwalczuk T. Optimization of Inconel 718 milling strategies. Mechanik. 2019; 92(12): 824-826. https://doi.org/10.17814/mechanik.2019.12.112.
  • 27. Nowakowski Ł., Skrzyniarz M., Miko E. The analysis of relative oscillation during face milling, Conference: 23rd International Conference ENGINEERING MECHANICS. 2017: 730-733.
  • 28. Zhang, W.; Chen, Z.; Tian, C.; Wu, J.; Xiao, G.; Guo, N.; Yi, M.; Zhang, J.; Xu, C. Addition of Nano CaF2@ SiO2 and SiC Whiskers in Ceramic Tools for Wear Reduction and Improved Machinability. Materials 2022, 15, 5430. https://doi.org/10.3390/ma15155430.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71a4e919-b0e9-47e4-b138-036766e0edb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.