PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lower extremity exoskeletons (LEE) are used as an assistive device for disabled people, rehabilitation for paraplegic, and power augmentation for military or industrial workers. In all the applications of LEE, the dynamic and static balance, prevention of falling, ensuring controller stability and smooth human-exoskeleton interaction are of critical importance for the safety of LEE users. Although numerous studies have been conducted on the balance and stability issues in LEEs, there is yet to be a systematic review that provides a holistic viewpoint and highlights the current research challenges. This paper reviews the advances in the inclusion of falling recognition, balance recovery and stability assurance strategies in the design and application of LEEs. The current status of research on LEEs is presented. It has been found that Zero Moment Point (ZMP), Centre of Mass (CoM) and Extrapolated Center of mass (XCoM) ideas are mostly used for balancing and prevention of falling. In addition, Lyapunov stability criteria are the dominant methods for controller stability confirmation and smooth human-exoskeleton interaction. The challenges and future trend of this domain of research are discussed. Researchers can use this review as a basis to further develop methods for ensuring the safety of LEE's users.
Twórcy
  • Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Mechatronics Engineering, Bayero University, Kano, Nigeria
  • Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
autor
  • Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia
Bibliografia
  • [1] Winter DA. Human balance and posture control during standing and walking. Gait Posture 1995;3(4):193–214.
  • [2] Young AJ, Ferris DP. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng 2016;25(2):171–82.
  • [3] Rupal, Rafique S, Singla A, Singla E, Isaksson M, Virk GS. Lower-limb exoskeletons: research trends and regulatory guidelines in medical and non-medical applications. Int J Adv Robot Syst 2017;14(6):1729881417743554.
  • [4] Viteckova S, Kutilek P, Jirina M. Wearable lower limb robotics: a review. Biocybern Biomed Eng 2013;33(2):96–105.
  • [5] Zhang W, Zhang W, Ding X, Sun L. Optimization of the rotational asymmetric parallel mechanism for hip rehabilitation with force transmission factors. J Mech Robot 2020;12(4).
  • [6] Zhang W, Zhang W, Shi D, Ding X. Design of hip joint assistant asymmetric parallel mechanism and optimization of singularity- free workspace. Mech Mach Theory 2018;122:389–403.
  • [7] Shao Y, Zhang W, Xu K, Ding X. Design of a novel compact adaptive ankle exoskeleton for walking assistance. IFToMM world congress on mechanism and machine science. Springer; 2019.
  • [8] Stirling L, Siu HC, Jones E, Duda K. Human factors considerations for enabling functional use of exosystems in operational environments. IEEE Syst J 2019;13(1):1072–83.
  • [9] Young AJ, Ferris DP. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng 2017;25(2):171–82.
  • [10] Norris JA, Marsh AP, Granata KP, Ross SD. Positive feedback in powered exoskeletons: improved metabolic efficiency at the cost of reduced stability? Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2007;5(Pts a-C. 2008):1619–26.
  • [11] Yoon J, Kumar RP, Özer A. An adaptive foot device for increased gait and postural stability in lower limb orthoses and exoskeletons. Int J Control Autom Syst 2011;9(3):515–24.
  • [12] Parietti F, Chan KC, Hunter B, Asada HH. Design and control of supernumerary robotic limbs for balance augmentation. In proceedings - IEEE international conference on robotics and automation; 2015.
  • [13] Goswami A, Kallem V. Rate of change of angular momentum and balance maintenance of biped robots. In IEEE international conference on robotics and automation, 2004. Proceedings. ICRA'04. 2004. IEEE; 2004.
  • [14] Hof AL. The 'extrapolated center of mass' concept suggests a simple control of balance in walking. Hum Mov Sci 2008;27 (1):112–25.
  • [15] Kangas M, Konttila A, Lindgren P, Winblad I, Jämsä T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 2008;28(2):285–91.
  • [16] Vallery H, Bogel A, O'Brien C, Riener R. Cooperative control design for robot-assisted balance during gait. At- Automatisierungstechnik 2012;60(11):715–20.
  • [17] Rajasekaran V, Aranda J, Casals A, Pons JL. An adaptive control strategy for postural stability using a wearable robot. Rob Auton Syst 2015;73:16–23.
  • [18] Zhang T, Tran M, Huang Sr H. Design and experimental verification of hip exoskeleton with balance capacities for walking assistance. IEEE/ASME Trans Mechatron 2018;23 (1):274–85.
  • [19] Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. Assessing the stability of human locomotion: a review of current measures. J R Soc Interface 2013;10(83):20120999.
  • [20] Torabi M, Sharifi M, Vossoughi G. Robust adaptive sliding mode admittance control of exoskeleton rehabilitation robots. Sci Iran 2018;25(5B):2628–42.
  • [21] Mefoued S, Belkhiat DEC. A robust control scheme based on sliding mode observer to drive a knee-exoskeleton. Asian J Control 2019;21(1):439–55.
  • [22] Yang Y, Huang D, Dong X. Enhanced neural network control of lower limb rehabilitation exoskeleton by add-on repetitive learning. Neurocomputing 2019;323:256–64.
  • [23] Guo Q, Li S, Jiang D. A lower extremity exoskeleton: human-machine coupled modeling, robust control design, simulation, and overload-carrying experiment. Math Probl Eng 2015;2015.
  • [24] Nagarajan U, Aguirre-Ollinger G, Goswami A. Integral admittance shaping: a unified framework for active exoskeleton control. Rob Auton Syst 2016;75:310–24.
  • [25] Li X, Pan Y, Chen G, Yu H. Multi-modal control scheme for rehabilitation robotic exoskeletons. Int J Rob Res 2017.
  • [26] Ataei MM, Salarieh H, Alasty A. An adaptive impedance control algorithm; application in exoskeleton robot. Sci Iran 2015;22(2):519–29.
  • [27] Wang S, Wang L, Meijneke C, Van Asseldonk E, Hoellinger T, Cheron G, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2015;23 (2):277–86.
  • [28] Al-Shuka HF, Corves B, Zhu WH, Vanderborght B. Multi-level control of zero-moment point-based humanoid biped robots: a review. Robotica 2016;34(11):2440–66.
  • [29] Bhounsule PA, Zamani A. Stable bipedal walking with a swing-leg protraction strategy. J Biomech 2017;51:123–7.
  • [30] Harib O, Hereid A, Agrawal A, Gurriet T, Finet S, Boeris G, et al. Feedback control of an exoskeleton for paraplegics TOWARD ROBUSTLY STABLE, HANDS-FREE DYNAMIC WALKING. IEEE Control Syst Mag 2018;38(6):61–87.
  • [31] Parietti F, Asada H. Supernumerary robotic limbs for human body support. IEEE Trans Robot 2016;32(2):301–11.
  • [32] Chisholm KM, Harruff RC. Elderly deaths due to ground-level falls. Am J Forensic Med Pathol 2010;31(4):350–4.
  • [33] Stubbs B, Mueller C, Gaughran F, Lally J, Vancampfort D, Lamb SE, et al. Predictors of falls and fractures leading to hospitalization in people with schizophrenia spectrum disorder: a large representative cohort study. Schizophr Res 2018;201:70–8.
  • [34] Peng Z, Jiang S, Li J. Control strategies for stability recovery of full lower limb exoskeleton robot based on plantar pressure. In proceedings of the 2017 12th IEEE conference on industrial electronics and applications. ICIEA 2017; 2018.
  • [35] Peng Z, Ma G, Li J. Human falling recognition system design with wearable pressure sensing shoes. In proceedings of the 2017 12th IEEE conference on industrial electronics and applications. ICIEA 2017; 2018.
  • [36] Kazerooni H, Racine JL, Huang L, Steger R. On the control of the berkeley lower extremity exoskeleton (BLEEX). In Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE; 2005.
  • [37] van Dijk W, Van der Kooij H. XPED2: a passive exoskeleton with artificial tendons. IEEE Robot Autom Mag 2014;21(4):56–61.
  • [38] Strausser KA, Kazerooni H. The development and testing of a human machine interface for a mobile medical exoskeleton. In 2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE; 2011.
  • [39] Talaty M, Esquenazi A, Briceno JE. Differentiating ability in users of the ReWalk TM powered exoskeleton: an analysis of walking kinematics. In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). IEEE; 2013.
  • [40] Rajasekaran V, Aranda J, Casals A. User intention driven adaptive gait assistance using a wearable exoskeleton. In advances in intelligent systems and computing. 2016;289–301.
  • [41] Zhang X, Yue Z, Wang J. Robotics in lower-limb rehabilitation after stroke. Behav Neurol 2017.
  • [42] Shi D, et al. A review on lower limb rehabilitation exoskeleton robots. Chinese J Mech Eng 2019;32(1):74.
  • [43] Sanchez-Villamañan MDC, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil 2019;16(1):55.
  • [44] Aliman N, Ramli R, Haris SM. Design and development of lower limb exoskeletons: a survey. Rob Auton Syst 2017;95:102–16.
  • [45] Zhang X, Wang G, Yuan P, Xu H, Hou YA. A control strategy for maintaining gait stability and reducing body-exoskeleton interference force in load-carrying exoskeleton. Journal of Intelligent and Robotic Systems: Theory and Applications 2019.
  • [46] Chen Q, Cheng H, Zou C, Huang R, Guo H. Intention recgonition for exoskeleton. In 2017 2nd International Conference on Advanced Robotics and Mechatronics, ICARM 2017; 2018.
  • [47] Low KH, Liu X, Goh CH, Yu H. Locomotive control of a wearable lower exoskeleton for walking enhancement. JVC/ Journal of Vibration and Control 2006;12(12):1311–36.
  • [48] Menga G, Ghirardi M. Lower limb exoskeleton for rehabilitation with improved postural equilibrium. Robotics 2018;7(2).
  • [49] Xu F, Lin X, Cheng H, Huang R, Q. Chen Q. Adaptive stair-ascending and stair-descending strategies for powered lower limb exoskeleton. In 2017 IEEE international conference on mechatronics and automation, ICMA 2017; 2017.
  • [50] Shi D, Zhang W, Ding X, Sun L. Parametric generation of three-dimensional gait for robot-assisted rehabilitation. Biol Open 2020;9(3).
  • [51] Goswami A. Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int J Rob Res 1999;18(6): 523–33.
  • [52] Vukobratovic M, Juricic D. Contribution to the synthesis of biped gait. IEEE Trans Biomed Eng 1969;(1):1–6.
  • [53] Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, et al. Planning walking patterns for a biped robot. IEEE Trans Robot Autom 2001;17(3):280–9.
  • [54] Aphiratsakun N, Parnichkun M. Balancing control of AIT leg exoskeleton using ZMP based FLC. Int J Adv Robot Syst 2009;6 (4):319–28.
  • [55] Shin H-K, Kim BK. Energy-efficient gait planning and control for biped robots utilizing vertical body motion and allowable ZMP region. IEEE Trans Ind Electron 2014;62(4):2277–86.
  • [56] Wang Z, Peyrodie L, Cao H, Agnani O, Watelain E, Wang H. Slow walking model for children with multiple disabilities via an application of humanoid robot. Mech Syst Signal Process 2016;68-69:608–19.
  • [57] Harcourt-Smith WE, Aiello LC. Fossils, feet and the evolution of human bipedal locomotion. J Anat 2004;204(5):403–16.
  • [58] Harcourt-Smith WE. Origin of bipedal locomotion. Handbook of paleoanthropology 2015;1919–59.
  • [59] Wang L, Chen C, Dong W, Du Z, Shen Y, Zhao G. Locomotion stability analysis of lower extremity augmentation device. J Bionic Eng 2019;16(1):99–114.
  • [60] Peng Z, Ma G, Luo M. Modeling and gait generation of powered lower exoskeleton robot. In proceedings of the 2017 12th IEEE conference on industrial electronics and applications. ICIEA 2017; 2018.
  • [61] Deng C, Li Z. Human-guided robotic exoskeleton cooperative walking for climbing stairs. In ICARM 2018 - 2018 3rd international conference on advanced robotics and mechatronics; 2019.
  • [62] Jatsun S, Savin S, Yatsun A. Motion control algorithm for a lower limb exoskeleton based on iterative LQR and ZMP method for trajectory generation, in Mechanisms and Machine Science; 2018;305–17.
  • [63] Jatsun S, Savin S, Yatsun A, Turlapov R. Adaptive control system for exoskeleton performing sit-to-stand motion. In ISMA 2015 - 10th International Symposium on Mechatronics and its Applications; 2016.
  • [64] Wang X, Wang H, Tian Y. Gait planning and hybrid model based tracking control of lower extremity exoskeleton. In Chinese Control Conference, CCC; 2016.
  • [65] Ugurlu B, Doppmann C, Hamaya M, Forni P, Teramae T, Noda T, et al. Variable ankle stiffness improves balance control: experiments on a bipedal exoskeleton. IEEE/ASME Trans Mechatron 2015;21(1):79–87.
  • [66] van der Kooij H, van Asseldonk EH, Vlutters M. Towards exoskeletons with balance capacities. Wearable robotics: challenges and trends. Springer; 2017. p. 175–9.
  • [67] Veneman JF. Exoskeletons supporting postural balance–the BALANCE project. In replace, repair, restore, relieve– Bridging clinical and engineering solutions in Neurorehabilitation. Springer; 2014. p. 203–8.
  • [68] Monaco V, Tropea P, Aprigliano F, Martelli D, Parri A, Cortese M, et al. An ecologically-controlled exoskeleton can improve balance recovery after slippage. Sci Rep 2017;7.
  • [69] Farkhatdinov I, Ebert J, van Oort G, Vlutters M, van Asseldonk E. Assisting human balance in standing with a robotic exoskeleton. IEEE Robot Autom Lett 2019;4(2):414–21.
  • [70] Karavas N, Ajoudani A, Tsagarakis N, Caldwell D. Human-inspired balancing assistance: application to a knee exoskeleton. In 2013 IEEE international conference on robotics and biomimetics (ROBIO). IEEE; 2013.
  • [71] Chen B, Zhong CH, Zhao X, Ma H, Qin L, Liao WH. Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance. IEEE Access 2019;7:33809–21.
  • [72] Chen B, Zhong CH, Ma H, Guan X, Qin LY, Chan KM, et al. Sit-to-stand and stand-to-sit assistance for paraplegic patients with CUHK-EXO exoskeleton. Robotica 2018;36(4):535–51.
  • [73] Yatsun A, Jatsun S. Modeling quasi-static gait of a person wearing lower limb exoskeleton, in Lecture Notes in Mechanical Engineering; 2019;565–75.
  • [74] Antipov V, Postolny A, Yatsun A, Jatsun S. The control algorithm of the lower limb exoskeleton synchronous gait. In MATEC Web of Conferences; 2018.
  • [75] Hyun DJ, Lim H, Park S, Yoon J, Jung K, Bae K, et al. Walking propulsion generation in double stance by powered exoskeleton for paraplegics. Rob Auton Syst 2019;116:24–37.
  • [76] Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007;15(3):379–86.
  • [77] Chen DS, Ning M, Zhang BG, Yang G. An improvement to the reciprocating gait orthosis for aiding paraplegic patients in walking. Science China-Technological Sciences 2015;58(4):727–37.
  • [78] Mummolo C, Peng WZ, Agarwal S, Griffin R, Neuhaus PD, Kim JH. Stability of Mina V2 for robot-assisted balance and locomotion. Front Neurorobot 2018;12(October).
  • [79] Sanz-Merodio D, Cestari M, Arevalo JC, Carrillo X, Garcia E. Development of a lower-limb active orthosis and a walker for gait assistance, in Advances in Intelligent Systems and Computing; 2014;219–33.
  • [80] Gordon DFN, Henderson G, Vijayakumar S. Effectively quantifying the performance of lower-limb exoskeletons over a range of walking conditions. Front Robot Ai 2018;5(JUN).
  • [81] Mao HF, Huang HP, Lu TW, Wang TM, Wu CH, Hu JS. Balance control and energetics of powered exoskeleton-assisted sit-to-Stand movement in individuals with paraplegic spinal cord injury. Arch Phys Med Rehabil 2018;99(10):1982–90.
  • [82] Chamnikar AS, Patil G, Radmanesh M, Kumar M. Trajectory generation for a lower limb exoskeleton for sit-to-stand transition using a genetic algorithm. In ASME 2017 Dynamic Systems and Control Conference, DSCC 2017; 2017.
  • [83] Song KT, Chien YL, Susanto. Development of an assistive torque generation system for a lower limb exoskeleton. In 2016 IEEE international conference on system science and engineering. ICSSE 2016; 2016.
  • [84] Jamkrajang P, Robinson MA. Can segmental model reductions quantify whole-body balance accurately during dynamic activities? Gait Posture 2017;56:37–41.
  • [85] Sivakumaran S, Schinkel-Ivy A, Masani K, Mansfield A. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults. Hum Mov Sci 2018;57:366–73.
  • [86] Hof A, Gazendam M, Sinke W. The condition for dynamic stability. J Biomech 2005;38(1):1–8.
  • [87] Wang L, Wang S, Van Asseldonk EHF, Van Der Kooij H. Actively controlled lateral gait assistance in a lower limb exoskeleton. In IEEE international conference on intelligent robots and systems; 2013.
  • [88] Davrazos G, Koussoulas N. A review of stability results for switched and hybrid systems. In mediterranean conference on control and automation. Citeseer; 2001.
  • [89] Yang Y, Ma L, Huang D. Development and repetitive learning control of lower limb exoskeleton driven by electrohydraulic actuators. IEEE Trans Ind Electron 2017;64(5):4169–78.
  • [90] Rifai H, Mohammed S, Djouani K, Amirat Y. Toward lower limbs functional rehabilitation through a knee-joint exoskeleton. IEEE Trans Control Syst Technol 2017;25(2):712–9.
  • [91] Rifai H, Mohammed S, Hassani W, Amirat Y. Nested saturation based control of an actuated knee joint orthosis. Mechatronics 2013;23(8):1141–9.
  • [92] Karavas N, Ajoudani A, Tsagarakis N, Saglia J, Bicchi A, Caldwell D. Tele-impedance based assistive control for a compliant knee exoskeleton. Rob Auton Syst 2015;73:78–90.
  • [93] Ahmed S, Wang H, Tian Y. Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asian J Control 2019;21(1):473–82.
  • [94] Han S, Wang H, Tian Y. Model-free based adaptive nonsingular fast terminal sliding mode control with time-delay estimation for a 12 DOF multi-functional lower limb exoskeleton. Adv Eng Softw 2018;119:38–47.
  • [95] Ahmed S, Wang H, Tian Y. Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton. JVC/Journal of Vibration and Control 2018;24(22):5273–90.
  • [96] Achili B, Madani T, Daachi B, Djouani K. Adaptive observer based on MLPNN and sliding mode for wearable robots: application to an active joint orthosis. Neurocomputing 2016;197:69–77.
  • [97] Mefoued S. A robust adaptive neural control scheme to drive an actuated orthosis for assistance of knee movements. Neurocomputing 2014;140:27–40.
  • [98] Sheng Z, Molazadeh V, Sharma N. Hybrid dynamical system model and robust control of a hybrid neuroprosthesis under fatigue based switching. In proceedings of the american control conference; 2018.
  • [99] Alibeji NA, Molazadeh V, Dicianno BE, Sharma N. A control scheme that uses dynamic postural synergies to coordinate a hybrid walking neuroprosthesis: theory and experiments. Front Neurosci 2018;12(APR).
  • [100] Alibeji N, Kirsch N, Sharma N. An adaptive low-dimensional control to compensate for actuator redundancy and FES-induced muscle fatigue in a hybrid neuroprosthesis. Control Eng Pract 2017;59:204–19.
  • [101] Jabbari Asl H, Narikiyo T, Kawanishi M. Adaptive neural network-based saturated control of robotic exoskeletons. Nonlinear Dyn 2018;94(1):123–39.
  • [102] Daachi ME, Madani T, Daachi B, Djouani K. A radial basis function neural network adaptive controller to drive a powered lower limb knee joint orthosis. Applied Soft Computing Journal 2015;34:324–36.
  • [103] Jabbari Asl H, Babaiasl M, Narikiyo T. Neural network-based asymptotic tracking control of unknown nonlinear systems with continuous control command. Int J Control 2018;1–9.
  • [104] Song S, Cao Y, Wang H, Xue J, Zhang X, Fu J, et al. Adaptive output feedback force tracking control for lower extremity power-assisted exoskeleton. Control Engineering and Applied Informatics 2018;20(3):60–8.
  • [105] Ajayi MO, Djouani K, Hamam Y. Bounded control of an actuated lower-limb exoskeleton. J Robot 2017;2017.
  • [106] Shahi H, Yousefi-Koma A, Mohammadi Moghaddam M. Robust adaptive admittance control of an exoskeleton in the presence of structured and unstructured uncertainties. Adv Robot 2018;32(5):242–65.
  • [107] Zhang X, Jiang W, Li Z, Song S. A hierarchical Lyapunov-based cascade adaptive control scheme for lower-limb exoskeleton. Eur J Control 2019.
  • [108] Antonellis P, Galle S, De Clercq D, Malcolm P. Altering gait variability with an ankle exoskeleton. PLoS One 2018;13(10).
  • [109] Yang P, Zhang G, Wang J, Wang X, Zhang L, Chen L. Command filter backstepping sliding model control for lower-limb exoskeleton. Math Probl Eng 2017;2017.
  • [110] Khamar M, Edrisi M. Designing a backstepping sliding mode controller for an assistant human knee exoskeleton based on nonlinear disturbance observer. Mechatronics 2018;54:121–32.
  • [111] Mefoued S. A second order sliding mode control and a neural network to drive. A knee joint actuated orthosis. Neurocomputing 2015;155:71–9.
  • [112] Zhang X, Ge WL, Fu H, Chen RX, Luo TH, Hashimoto M. A human-robot interaction based coordination control method for assistive walking devices and an assessment of its stability. Math Probl Eng 2018.
  • [113] Yu HY, Huang SN, Chen G, Pan YP, Guo Z. Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans Robot 2015;31(5):1089–100.
  • [114] Taherifar A, Vossoughi G, Ghafari AS. Assistive-compliant control of wearable robots for partially disabled individuals. Control Eng Pract 2018;74:177–90.
  • [115] Asl HJ, Narikiyo T, Kawanishi M. An assist-as-needed velocity Field control Scheme for rehabilitation robots. In IEEE international conference on intelligent robots and systems; 2018.
  • [116] Lu R, Li Z, Su CY, Xue A. Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Trans Ind Electron 2014;61(7):3776–85.
  • [117] Ou YS, Xue ZJ, Li GL, Su CY. Adaptive fuzzy tracking control of a human lower limb with an exoskeleton. 2012 IEEE international conference on robotics and biomimetics; 2012.
  • [118] Jin X, Zhu S, Zhu X, Chen Q, Zhang X. Single-input adaptive fuzzy sliding mode control of the lower extremity exoskeleton based on human-robot interaction. Adv Mech Eng 2017;9(2).
  • [119] Mohammed S, Huo WG, Huang J, Rifai H, Amirat Y. Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis. Rob Auton Syst 2016;75:41–9.
  • [120] Zhu S, Jin X, Yao B, Chen Q, Pei X, Pan Z. Non-linear sliding mode control of the lower extremity exoskeleton based on human- robot cooperation. Int J Adv Robot Syst 2016;13(5):1–10.
  • [121] Kardan I, Akbarzadeh A. Robust output feedback assistive control of a compliantly actuated knee exoskeleton. Rob Auton Syst 2017;98:15–29.
  • [122] Aguirre-Ollinger G, Nagarajan U, Goswami A. An admittance shaping controller for exoskeleton assistance of the lower extremities. Auton Robots 2016;40(4):701–28.
  • [123] Ringhof S, Patzer I, Beil J, Asfour T, Stein T. Does a passive unilateral lower limb exoskeleton affect human static and dynamic balance control? Frontiers in Sports and Active Living 2019;1:22.
  • [124] Molazadeh V, Sheng Z, Bao X, Sharma N. A robust iterative learning switching controller for following virtual constraints: application to a hybrid neuroprosthesis. IFAC-PapersOnLine 2019;51(34):28–33.
  • [125] Yatsun A, Karlov A, Malchikov A, Jatsun S. Investigation of the dynamical characteristics of the lower-limbs exoskeleton actuators. In MATEC web of conferences. EDP Sciences; 2018.
  • [126] Niyetkaliyev AS, Hussain S, Ghayesh MH, Alici G. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Hum Mach Syst 2017;47(6):1134–45.
  • [127] Lovrenovic Z, Doumit M. Development and testing of a passive walking assist exoskeleton. Biocybern Biomed Eng 2019.
  • [128] Pardoel S, Doumit M. Development and testing of a passive ankle exoskeleton. Biocybern Biomed Eng 2019;39(3):902–13.
  • [129] Ren B, Luo X, Chen J. Single leg gait tracking of lower limb exoskeleton based on adaptive iterative learning control. Appl Sci 2019;9(11):2251.
  • [130] Peternel L, Noda T, Petric T, Ude A, Morimoto J, Babic J. Adaptive control of exoskeleton robots for periodic assistive behaviours based on EMG feedback minimisation. PLoS One 2016;11(2):e0148942.
  • [131] Jung C. Poincaré map for scattering states. J Phys A Math Gen 1986;19(8):1345.
  • [132] Martelli D, Vannetti F, Cortese M, Tropea P, Giovacchini F, Micera S, et al. The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control. Robotica 2014;32(8):1317–30.
  • [133] Lee S-H, Goswami A. Reaction mass pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots. In proceedings 2007 IEEE international conference on robotics and automation. IEEE; 2007.
  • [134] Jung JH, Gutiérrez I, Veneman J. The use of centroidal momentum analysis for defining a stability index for walking with an exoskeleton. In TAR 2015: technically assisted rehabilitation conference; 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71a4531a-f5ef-4cd8-bc7f-098022e3ef32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.