PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short-term positioning accuracy based on mems sensors for smart city solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of obtaining short-term positioning accuracy based on micro electro-mechanical system (MEMS) sensors and analysis of the results. A high-accuracy and fast-positioning algorithm must be included due to the high risk of accidents in cities in the future, especially when autonomous objects are taken into account. High-level positioning systems should consider a number of sub-systems such as global positioning system (GPS), CCTV – video analysis, a system based on analysis of signal strength of access points (AP), etc. Short-term positioning means that there are other locating systems with a sufficiently high degree of accuracy based on, e.g. a video camera, but the located object can disappear when it is hidden by other objects, e.g. people, things, shelves etc. In such a case, MEMS sensors can be employed as a positioning system. The paper examines typical movement profiles of a radio-controlled (RC) model and fundamental filtering methods in respect of position accuracy. The authors evaluate the complexity and delay of the filter and the accuracy of the positioning in respect of the current speed and phase of movement (positive acceleration, constant) of the object. It is necessary to know whether and how the length of the filter changes the position accuracy. It has been shown that the use of fundamental filters, which provide solutions in a short time, enables to locate objects with a small error in a limited time.
Rocznik
Strony
95--107
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr., wzory
Twórcy
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16,44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16,44-100 Gliwice, Poland
Bibliografia
  • [1] Grzechca, D., Wrobel, T., Bielecki, P. (2014). Indoor Location and Idetification of Objects with Video Survillance System and WiFi Module. IEEE, 171-174.
  • [2] Polańczyk, M., Strzelecki, M., Ślot, K. (2013). Obstacle Avoidance Procedure and Lee Algorithm Based Path Replanner for Autonomous Mobile Platforms. International Journal of Electronics and Telecommunications, 59(1), 85-91.
  • [3] Chruszczyk, Ł., Zając, A. (2016). Comparison of Indoor/Outdoor, RSSI-Based Positioning Using 433, 868 or 2400 MHz ISM Bands. International Journal of Electronics and Telecommunications, 62(4), 395-399.
  • [4] De Angelis, A., Nilsson, J., Skog, I., Händel, P., Carbone, P. (2010). Indoor Positioning by Ultrawide Band Radio Aided Inertial Navigation. Metrol. Meas. Syst., 17(3), 447-460.
  • [5] Kamiński, Ł., Bruniecki, K. (2012). Mobile Navigation System for Visually Impaired Users in the Urban Environment. Metrol. Meas. Syst., 19(2), 245–256.
  • [6] Pitas, I., Venetsanopoulos, A.N. (1990). Nonlinear Digital Filters. Springer US, Boston, MA.
  • [7] Smith, S.W. (1997).The scientist and engineer’s guide to digital signal processing. 1st ed California Technical Pub, San Diego, Calif.
  • [8] Gallagher, N., Wise, G. (1981). A theoretical analysis of the properties of median filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29 (6), 1136-1141.
  • [9] de Oliveira, M., Araujo, N., da Silva, R., da Silva, T., Epaarachchi, J. (2018). Use of Savitzky-Golay Filter for Performances Improvement of SHM Systems Based on Neural Networks and Distributed PZT Sensors. Sensors, 18(2), 152.
  • [10] Pearson, R.K., Neuvo, Y., Astola, J., Gabbouj, M. (2016). Generalized Hampel Filters. EURASIP Journal on Advances in Signal Processing, (1), 87.
  • [11] STMicroelectronics (2014). Tilt measurement using a low-g 3-axis accelerometer.
  • [12] Michael J. Caruso (1997). Applications of Magnetoresistive Sensors in Navigation Systems.
  • [13] Chruszczyk, Ł., Zając, A., Grzechca, D. (2016). Comparison of 2.4 and 5 GHz WLAN Network for Purpose of Indoor and Outdoor Location. International Journal of Electronics and Telecommunications, 62(1), 71-79.
  • [14] Botta, M., Simek, M. (2013). Adaptive Distance Estimation Based on RSSI in 802.15.4 Network. Radioengineering, 22(4), 1162-1168.
  • [15] Zhu, X., Feng, Y. (2013). RSSI-based Algorithm for Indoor Localization. Communications and Network, 05 (02), 37-42.
  • [16] Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E. (1998). Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147.
Uwagi
EN
1. This work was supported by the Ministry of Science and Higher Education funding for young researchers statutory activities. BKMN 2018.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71a101ff-6e86-4983-a0c8-03ed43fa85eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.