PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Approximation solvability for a system of implicit nonlinear variational inclusions with H-monotone operators

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce and study a new system of variational inclusions which is called a system of nonlinear implicit variational inclusion problems with A-monotone and H-monotone operators in semi-inner product spaces. We define the resolvent operator associated with A-monotone and H-monotone operators and prove its Lipschitz continuity. Using resolvent operator technique, we prove the existence and uniqueness of solution for this new system of variational inclusions. Moreover, we suggest an iterative algorithm for approximating the solution of this system and discuss the convergence analysis of the sequences generated by the iterative algorithm under some suitable conditions.
Wydawca
Rocznik
Strony
241--254
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • Department of Mathematics Education, Kyungnam University, Changwon, Gyeong- nam 51767, Korea
autor
  • Department of Mathematics, South Campus University of Kashmir, Anantnag 192101, J & K-India
Bibliografia
  • [1] Hassouni A., Moudafi A., A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 1994, 185(3), 706-712
  • [2] Adly S., Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 1996, 201(2), 609-630
  • [3] Huang N. J., Generalized nonlinear variational inclusions with noncompact valued mappings, Appl. Math. Lett., 1996, 9(3), 25-29
  • [4] Ding X. P., Perturbed proximal point algorithm for generalized quasi-variational inclusions, J. Math. Anal. Appl., 1997, 210(1), 88-101
  • [5] Kazmi K. R., Mann and Ishikawa type perturbed iterative algorithms for generalized quasivariational inclusions, J. Math. Anal. Appl., 1997, 209(2), 572-584
  • [6] Kazmi K. R., Bhat M. I., Iterative algorithm for a system of nonlinear variational-like inclusions, Comput. Math. Appl., 2004, 48(12), 1929-1935
  • [7] Kazmi K. R., Bhat, M. I., Convergence and stability of iterative algorithms for generalized set-valued variational-like inclusions in Banach spaces, Appl. Math. Comput., 2005, 166(1), 164-180
  • [8] Bhat M. I., Zahoor B., Generalized variational-like inclusion problem involving (H(•,•)−η)-monotone operators in Banach spaces, J. Nonlinear Anal. Optim., 2017, 8(1), 7-19
  • [9] Bhat M. I., Zahoor B., (H(•,•), η)-monotone operators with an application to a system of set-valued variational-like inclusions in Banach spaces, Nonlinear Funct. Anal. Appl., 2017, 22(3), 673-692
  • [10] Ceng L. C., Wen C. F., Yao Y., Iteration approaches to hierarchial variational inequalities for infinite nonexpansive mappings and finding zero points of m-accretive operators, J. Nonlinear Var. Anal., 2017, 1(2), 213-235
  • [11] Chang S. S., Kim J. K., Kim K. H., On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 2002, 268(1), 89-108
  • [12] Fang Y. P., Huang N. J., H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 2003, 145(2-3), 795-803
  • [13] Fang Y. P., Huang N. J., Thompson H. B., A new system of variational inclusions with (H, η) monotone operators in Hilbert spaces, Comput. Math. Appl., 2005, 49(2-3), 365-374
  • [14] He X. F., Lao J., He Z., Iterative methods for solving variational inclusions in Banach spaces, J. Comput. Appl. Math., 2007, 203(1), 80-86
  • [15] Huang N. J., Fang Y. P., Generalized m-accretive mappings in Banach spaces, J. Sichuan University, 2001, 38(4), 591-592
  • [16] Huang N. J., Fang Y. P., Cho Y. J., Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions, J. Nonlinear Convex Anal., 2003, 4(2), 301-308
  • [17] Kalia R. N., Verma R. U., H-monotone nonlinear variational inclusion systems, Nonlinear Funct. Anal. Appl., 2006, 11(2), 195-200
  • [18] Kim J. K., Kim D. S., A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal., 2004, 11(1), 235-243
  • [19] Kim J. K., Buong Ng., New explicit iteration method for variational inequalities on the set of common fixed points for a finite family of nonexpansive mappings, J. Inequal. Appl., 2013, 2013: 419
  • [20] Kim J. K., Kim K. S., New systems of generalized mixed variational inequalities with nonlinear mappings in Hilbert spaces, J. Comput. Anal. Appl., 2010, 12(3), 601-612
  • [21] Lan H. Y., Kim J. H., Cho Y. J., On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl., 2007, 327(1), 481-493
  • [22] Lee C. H., Ansari Q. H., Yao J. C., A perturbed algorithm for strongly nonlinear variational like inclusions, Bull. Aust. Math. Soc., 2000, 62(3), 417-426
  • [23] Li X., Huang N. J., Graph convergence for the H(•,•)-accretive operators in Banach spaces with an application, Appl. Math. Comput., 2011, 217(22), 9053-9061
  • [24] Luo X. P., Huang N. J., Generalized H−η-accretive operators in Banach spaces with an application to variational inclusions, Appl. Math. Mech., (English Edition), 2010, 31(4), 501-510
  • [25] Alimohammady M., Balooce J., Cho Y. J., Roohi M., Iterative algorithms for new class of extended general nonconvex setvalued variational inequalities, Nonlinear Anal. TMA, 2010, 73, 3907-3923
  • [26] Sahu N. K., Nahak C., Nanda S., Graph convergence and approximation solvability of a class of implicit variational inclusion problems in Banach spaces, J. Indian Math. Soc., 2014, 81(1-2), 155-172
  • [27] Sahu N. K., Mohapatra R. N., Nahak C., Nanda S., Approximation solvability of a class of A-monotone implicit variational inclusion problems in semi-inner product spaces, Appl. Math. Comput., 2014, 236, 109-117
  • [28] Shan S. Q., Xiao Y. B., Huang N. J., A new system of generalized implicit set-valued variational inclusions in Banach spaces, Nonlinear Funct. Anal. Appl., 2017, 22(5), 1091-1105
  • [29] Verma R. U., General nonlinear variational inclusion problems involving A-monotone mappings, Appl. Math. Lett., 2006, 19(9), 960-963
  • [30] Verma R. U., A generalization to variational convergence of operators, Adv. Nonlinear Var. Inequal., 2008, 11, 97-101
  • [31] Verma R. U., On general over-relaxed proximal point algorithm and applications, Optimization, 2011, 60(4), 531-536
  • [32] Verma R. U., General class of implicit variational inclusions and graph convergence on A-maximal relaxed monotonicity, J. Optim. Theory Appl., 2012, 155(1), 196-214
  • [33] Xu B., Iterative schemes for generalized implicit quasi variational inclusions, Nonlinear Funct. Anal. Appl., 2002, 7(2), 199-211
  • [34] Zou Y. Z., Huang N. J., A new system of variational inclusions involving H(•;•)-accretive operator in Banach spaces, Appl. Math. Comput., 2009, 212(1), 135-144
  • [35] Akram M., Chen J.-W., Dilshad M., Generalized Yosida approximation operators with an application to a system of Yosida inclusions, J. Nonlinear Funct. Anal., 2018, Article id 17
  • [36] Aubin J. P., Frankowska H., Set-Valued Analysis, Birkhäuser, Cambridge, MA, 1990
  • [37] Bynum W. L., Weak parallelogram laws for Banach spaces, Canad. Math. Bull., 1976, 19(3), 269-275
  • [38] Giles J. R., Classes of semi-inner product spaces, Trans. Amer. Math. Soc., 1967, 129, 436-446
  • [39] Lumer G., Semi inner product spaces, Trans. Am. Math. Soc., 1961, 100, 29-43
  • [40] Nadler S. B., Multivalued contraction mappings, Pacific J. Math., 1969, 30(2), 475-488
  • [41] Rockafellar R. T., Wets R. J. B., Variational Analysis, Springer, Berlin, 1998
  • [42] Xu H. K., Inequalities in Banach spaces with applications, Nonlinear Anal. TMA, 1991, 16(12), 1127-1138
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-719bac9b-4e66-42fe-b588-f147434252f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.