PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EEG with a reduced number of electrodes: Where to detect and how to improve visually, auditory and somatosensory evoked potentials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The measurement of evoked potentials has become a standard tool to test new hardware and software for electroencephalography (EEG). In this study, we investigate where to detect and how to improve visually, auditory and somatosensory evoked potentials with a reduced number of electrodes. We measured a total of 50 evoked potentials in healthy subjects, and we were able to detect visually, auditory and somatosensory evoked potentials with just three electrodes. We also investigated where to measure a combination of visually, auditory and somatosensory evoked potentials and found the best positions to be Oz, O1, O2, TP9 and TP10. In the second part of this study, we analyzed how the evoked potentials depend on the segmentation frequency selected to superpose EEG responses. We found that the detection of visually evoked potentials requires the segmentation frequency to match the stimulus frequency with an accuracy of at least 99.92 percent. The detection of auditory evoked potentials and somatosensory evoked potentials requires a matching of at least 99.95 percent. Therefore, a correct matching of the segmentation frequency with the stimulation frequency is the primary key to improving the quality of evoked potentials.
Twórcy
  • Hochschule Mannheim (BMT), John-Deere-Strasse 85, 68163 Mannheim, Germany
autor
  • Mannheim Biomedical Engineering Laboratories, Heidelberg University, Mannheim, Germany
autor
  • Mannheim Biomedical Engineering Laboratories, Heidelberg University, Mannheim, Germany
Bibliografia
  • [1] Schomer DL, da Silva FL, editors. Niedermeyer's electroencephalography—basic principles, clinical applications, and related fields. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011 [chapter III].
  • [2] Chatrian GE, Lettich E, Nelson PL. Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. Am J EEG Technol 1985;25(2):83–92.
  • [3] Lau TM, Gwin JT, Ferris DP. How many electrodes are really needed for EEG-based mobile brain imaging? J Behav Brain Sci 2012;2:387–93.
  • [4] Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988;70 (6):510–23.
  • [5] Wolpaw JR, McFarland DJ, Neat GW, Forneris CA. An EEG-based brain–computer interface for cursor control. Electroencephalogr Clin Neurophysiol 1991;78(3):252–9.
  • [6] Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, et al. A spelling device for the paralysed. Nature 1999;398(6725):297–8.
  • [7] Lubar JF, Shouse MN. EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm: a preliminary report. Biofeedback Self-Regulation 1976;1(3):293–306.
  • [8] Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N. Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 2006;118(5):e1530–4.
  • [9] Arns M, de Ridder S, Strehl U, Breteler M, Coenen A. Efficiacy of neurofeedback treatment in ADHD: the effects of inattention, impulsivity and hyperactivity: a meta-analysis. Clin EEG Neurosci 2009;40(3):180–9.
  • [10] Schomer DL, da Silva FL, editors. Niedermeyer's electroencephalography—basic principles, clinical applications, and related fields. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011 [chapter VII].
  • [11] Faul S, Marnane W. Dynamic, location-based channel selection for power consumption reduction in EEG analysis. Comput Methods Programs Biomed 2012;108:1206–15.
  • [12] Piryatinska A,WoyczynskiWA, Scher MS, Loparo KA. Optimal channel selection for analysis of EEG-sleep patterns of neonates. Comput Methods Programs Biomed 2012;106:14–26.
  • [13] Stevenson NJ, Lauronen L, Vanhatalo S. The effect of reducing EEG electrode number on the visual interpretation of the human expert for neonatal seizure detection. Clin Neurophysiol 2019;129:265–70.
  • [14] Caton R. The electrical currents of the brain. Br Med J 1875;2:278.
  • [15] Berger H. Ueber das Elektroenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh 1929;87(1):527–70.
  • [16] Fine E, Supala A, Lohr LA. Caton and Dawson: discovers of evoked responses. Clin Neurophysiol 2008;119(3):e63.
  • [17] Dawson GD. Investigations on a patient subject to myoclonic seizures after sensory stimulation. J Neurol Neurosurg Psychiatry 1947;10(4):141–62.
  • [18] Merton PA, Morton HB. George Dawson (1912–1983) and the invention of averaging techniques in physiology. Trends Neurosci 1984;7(10):371–4.
  • [19] Stöhr M, Dichgans J, Buettner U, Hess C. Evozierte Potentiale. 4th ed. Heidelberg: Springer; 2005 [chapters 2–4].
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7197803d-ebbb-4b43-95d4-a508ec812724
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.