Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a diagnosis of turbochargers in the supercharging systems of marine engines in terms of maintenance decisions. The efficiency of turbocharger rotating machines was defined. The operating parameters of turbocharging systems used to monitor the correct operation and diagnose turbochargers were identified. A parametric diagnostic test was performed. Relationships between parameters for use in machine learning were selected. Their credibility was confirmed by the results of the parametric test of the turbocharger system and the main engine, verified by the coefficient of determination. A particularly good fit of the describing functions was confirmed. As determinants of the technical condition of a turbocharger, the relationship between the rotational speed of the engine shaft, the turbocharger rotor assembly and the charging air pressure was assumed. In the process of machine learning, relationships were created between the rotational speed of the engine shaft and the boost pressure, and the indicator of the need for maintenance. The accuracy of the maintenance decisions was confirmed by trends in changes in the efficiency of compressors.
Czasopismo
Rocznik
Tom
Strony
795--804
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Mechanical Engineering, ul. Wały Chrobrego 1-2, 70-500 Szczecin, Poland
autor
- West Pomeranian University of Technology, Faculty of Maritime Technology and Transport, al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
- 1. ABB Turbo Systems Ltd: Operational Manual TPL 77-A, 2007
- 2. Adamkiewicz A., Zeńczak W.: Diagnostyka systemu turbodoładowania okrętowego silnika o zapłonie samoczynnym podczas eksploatacji. DIAGO 2016 Technicka Diagnostika Asociace Technickych Diagnostiku Ćeske Republiku, o.s., ISSN 1210-311X, Z1, ROĆNIK XXV, Abstrakt book, CD 5-14
- 3. Anantharaman M., Khan F., Garaniya V., Lewarn B., Reliability Assessment of Main Egine Subsystems Considering Turbocharger Failure as a Case Study. TransNav the International Journal on Marine Navigation and Safety of Sea Transportation 2018;12(2):271-276. Doi:10.12716/1001.12.02.06
- 4. Anantharaman M, Islam R, Sardar A, Garaniya V, Khan F. Impact of defective turbocharging system on the safety and reliability of large marine diesel engine. TransNav : International Journal on Marine Navigation and Safety of Sea Transportation. 2021;15(1):189-198.
- 5. Burzyński K.: Analiza parametrów dopuszczalnych i granicznych stosowanych w diagnostyce cieplnych maszyn wirnikowych. Praca dyplomowa inżynierska, Akademia Morska w Szczecinie, Wydział Mechaniczny, Szczecin 2015.
- 6. Cui X, Yang C, Serrano JR, Shi M. A performance degradation evaluation method for a turbocharger in a diesel engine. R Soc Open Sci. 2018 Nov 14;5(11):181093. doi: 10.1098/rsos.181093. PMID: 30564402; PMCID: PMC6281929.
- 7. Deng, X. W., Gu, Y. J., Fang, L. P., Ren, Z. X., & Han, Y. P., Study of Intelligent Fault Diagnosis Method for Turbo-Generator Unit Based on Support Vector Machine and Knowledge. Applied Mechanics and Materials 2014; 543–547; 1057–1063. Trans Tech Publications, Ltd, https://doi.org/10.4028/www.scientific.net/amm.543-547.1057
- 8. Divya M.N, Modeling a Fault Detection Predictor in Compressor using Machine Learning Approach based on Acoustic Sensor Data, (IJACSA) International Journal of Advanced Computer Science and Applications 2021;12, (9); 650-667
- 9. Dong H., Zhao Z., Fu J., Liu J., Li J., Liang K., Zhou Q., Experiment and simulation investigation on energy management of a gasoline vehicle and hybrid turbocharger optimization based on equivalent consumption minimization strategy, Energy Conversion and Management, 2020; 226. Doi.org/10.1016/j.enconman.2020.113518.
- 10. Főző l., Andoga R., Madarász L., Kolesár J., Judičák J., Description of an intelligent small turbocompressor engine with variable exhaust nozzle, SAMI 2015, IEEE 13th International Symposium on Applied Machine Intelligence and Informatics, January 22-24, 2015, Herlany, Slovakia
- 11. Guan C, Theotokatos G, Chen H. Analysis of Two Stroke Marine Diesel Engine Operation Including Turbocharger Cut-Out by Using a Zero-Dimensional Model. Energies. 2015; 8(6):5738-5764. https://doi.org/10.3390/en8065738
- 12. Hipple S. M., Bonilla-Alvarado H., Pezzini P., Shadle L., Bryden K. M., Using Machine Learning Tools to Predict Compressor Stall, Journal of Energy Resources Technology 2020; 142; 072305-1- 072305-9
- 13. Hountalas D.T.; Sakellaridis N.F.; Pariotis E.; Antonopoulos A.K.; Zissimatos L.; Papadakis N., Effect of turbocharger cut out on two-stroke marine diesel engine performance and NOx emissions at part load operation. In Proceedings of the ASME 12th biennial conference on engineering systems design and analysis, Copenhagen, Denmark, 25–27 July 2014. ESDA2014-20514
- 14. Hriadel D. Health Status Monitoring of Turbocharger for Passenger Vehicle Applications, Master’s Thesis, Czech Technical University in Prague, Department of Control Engineering, Prague, January 2019
- 15. Knežević V., Orović J., Stazić L., Čulin J., Fault Tree Analysis and Failure Diagnosis of Marine Diesel Engine Turbocharger System, Journal of Marine Science and Engineering 2020; 8, (12), doi:10.3390/jmse8121004
- 16. Lau C., Maier M., Knowledge-based predictive maintenance for olefins turbocompressors, 2004 AIChE Spring National Meeting, Conference Proceedings; 611 – 625
- 17. Liu C, Cao Y, Ding S, Zhang W, Cai Y, Lin A. Effects of blade surface roughness on compressor performance and tonal noise emission in a marine diesel engine turbocharger. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020;234(14):3476-3490. Doi:10.1177/0954407020927637
- 18. Liu C., Cao Y., Liu Y.2, Zhang W., Ming P., Numerical investigation of marine diesel engine turbocharger compressor tonal noise. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020;234 (1):71-84. Doi: 10.1177/0954407019841808
- 19. MAN B&W Turbocharger. Cleaning the Turbine – Benefits of Dry Cleaning at operating load. Diesel Customer Information. MAN B&W Diesel AG 86224 Augsburg Cus 228, 06/06
- 20. Medica, V., Račić, N., & Radica, G. (2009). Performance simulation of marine slow-speed diesel propulsion engine with turbocharger under aggravated conditions. Strojarstvo, 51(3), 199-212
- 21. Nguyen-Schafer, H. Rotodynamics of Automotive Turbochargers. Springer. 2015,XV, 362 p. 222. Chapter 2 Thermodynamics of Turbochargers. ISBN: 978-3-3-319-17643-7.
- 22. Nnaji, O.E., Nkoi, B., Lilly, M.T., Le-ol, A.K.: Evaluating the Reliability of a Marine Diesel Engine Using the Weibull Distribution. Journal of Newviews in Engineering and Technology (JNET). 2, 2, 1–9 (2020).
- 23. Pawełczyk M, Fulara S, Sepe M, De Luca A, Badora M. Industrial gas turbine operating parameters monitoring and data-driven prediction. Eksploatacja i Niezawodność – Maintenance and Reliability 2020; 22 (3): 391–399, http://dx.doi.org/10.17531/ein.2020.3.2
- 24. Prytz, Rune et al. (2015). “Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data.” In: Engineering applications of artificial intelligence 2015;41: 139–150. Doi: 10.1016/j.engappai.2015.02.009
- 25. Tabaszewski M, Szymański G. M. Engine valve clearance diagnostics based on vibration signals and machine learning methods. Eksploatacja i Niezawodność – Maintenance and Reliability 2020; 22 (2): 331–339, http://dx.doi.org/10.17531/ein.2020.2.16.
- 26. Taylor J.V, Conduit B., Dickens A., Hall C., Hillel M., Miller R. J., Predicting the Operability of Damaged Compressors Using Machine Learning, Journal of Turbomachinery 2020; 142; 051010-1: 051010-8, DOI: 10.1115/1.4046458,
- 27. Turbocharging Efficiencies - Definitions and Guidelines for Measurement and Calculation. International Council on Combustion Engines. CIMAC Working Group “Turbocharger Efficiency“ and approved by CIMAC in May 2007, Frankfurt, Germany, Number 27/2007
- 28. Vanhaelst, R., Kheir, A., Czajka, J., A systematic analysis of the friction losses on bearings of modern turbocharger. Combustion Engines,2015; 55(1), 22-31
- 29. Varbanets R., Fomin, O., Píštěk V., Klymenko V., Minchev D., Khrulev A., Kučera P., Acoustic method for estimation of marine low-speed engine turbocharger parameters. Journal of Marine Science and Engineering, 2021;9(3), 321.
- 30. Vrettakos NA. Analysis and characterization of a marine turbocharger’s unstable performance. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2018;232(3):293-306. doi:10.1177/1475090217693118
- 31. Witkowski K.: Research on Influence of Condition Elements the Supercharger System On The Parameters Of The Marine Diesel Engine Journal of KONES Powertrain and Transport, Vol. 20, No. 1 2013
- 32. Yi W., Hailong L., Gengxuan C., Jiawei Y., Fault Diagnosis of Marine Turbocharger System Based on an Unsupervised Algorithm, Journal of Electrical Engineering & Technology DA - 2020; 05(01), https://doi.org/10.1007/s42835-020-00375-z
- 33. Zhang, J., Sun, H., Hu, L., and He, H., Fault diagnosis and failure prediction by thrust load analysis for a turbocharger thrust bearing. In Turbo Expo: Power for Land, Sea, and Air. 2010;44014: 491-498
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-719066ee-0d95-4bb0-9e36-1d605c6dccdb