Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Internet of Things in Medicine and for Improved Living Comfort
Konferencja
Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji (21-23.06.2017 ; Poznań, Polska)
Języki publikacji
Abstrakty
Pojęcie Internetu rzeczy – IoT (Internet of Things) lub Internetu wszechrzeczy IoE (Internet of Everything) nie jest nowe, ale ostatnio zyskuje na znaczeniu dzięki włączeniu go w nurt prac standaryzacyjnych i rozwojowych nad 5. generacją systemów komórkowych. Z założenia w systemach IoT źródłem danych są nie tylko rzeczy, będące wytworem cywilizacji technicznej, ale także czujniki monitorujące ludzi, przyrodę ożywioną i nieożywioną. Wzrastające oczekiwania społeczne dotyczące jakości opieki zdrowotnej oraz nowe możliwości techniczne systemów 5. generacji skłaniają do opracowania nowych rozwiązań w medycynie i tworzenia środowiska bardziej przyjaznego człowiekowi. W artykule skrótowo omówiono wybrane zagadnienia dotyczące tej tematyki. Między innymi scharakteryzowano specyfikację wąskopasmowej transmisji NB-IoT w systemach komórkowych, które mają zapewnić wszędzie dostępną komunikację z dużą liczbą tanich, energooszczędnych urządzeń użytkownika, co będzie stanowiło istotną wartość dodaną w porównaniu ze stanem obecnym.
The Internet of Things (IoT) or the Internet of Everything (IoE) is not a new concept but it gains importance since it is now a part of standardization and development of the 5G cellular systems. In the IoT data sources are not only “things” but also sensors monitoring both people and living and nonliving nature. Growing expectations concerning health care quality and contemporary technological advances in 5G systems foster greater attention to medical applications and ambient assisted living solutions. The paper briefly discusses selected problems within this wider topic. It includes characterization of the Narrow- Band IoT (NB-IoT) technology specification designed to work with massive, energy-efficient, low-data-rate user equipment devices, which will constitute significant added value compared to today’s possibilities.
Wydawca
Rocznik
Tom
Strony
158--164
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Politechnika Łódzka, Instytut Elektroniki
autor
- Politechnika Łódzka, Instytut Elektroniki
Bibliografia
- [1] Mccluskey B., “Wear it well,” Engineering & Technology, vol. 12, no. 1, pp. 32–35, February 2017. doi: 10.1049/et.2017.0100.
- [2] Hausman S., Ł. Januszkiewicz, „Sieci radiowe działające w bezpośrednim otoczeniu ciała człowieka”, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, 2014, nr 6, str. 143–150.
- [3] Oliveira A., C. Gehin, B. Massot, C. Ramon, A. Dittmar, E. McAdams: “Thermal parameters measurement on fire fighter: Improvement of the monitoring system”, Engineering in Medicine and Biology Society (EMBC), 2010 pp.: 6453-6456.
- [4] Jayaraman S., P. Kiekens, A. Grancaric: “Intelligent Textiles for Personal Protection and Safety”, IOS Press 2006.
- [5] Zimmerman T.G., “Personal Area Networks (PAN): Near-Field Intra- Body Communication”, IBM Systems Journal 35, No. 3&4, 1996.
- [6] “IEEE 802.15.6 Web site,” http://www.ieee802.org/15/pub/TG6.html, 2012.
- [7] Pasluosta C. F. , H. Gassner, J. Winkler, J. Klucken and B. M. Eskofier, “An Emerging Era in the Management of Parkinson’s Disease: Wearable Technologies and the Internet of Things”, in IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 6, pp. 1873–1881, Nov. 2015. doi: 10.1109/JBHI.2015.2461555.
- [8] Jusak J., H. Pratikno and V. H. Putra, “Internet of Medical Things for cardiac monitoring: Paving the way to 5G mobile networks”, 2016 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Surabaya, Indonesia, 2016, pp. 75–79. doi: 10.1109/COMNETSAT.2016.7907420
- [9] De Silva A. H. T. E., W. H. P. Sampath, N. H. L. Sameera, Y. W. R. Amarasinghe and A. Mitani, “Development of a wearable telemonitoring system with IoT for biomedical applications”, 2016 IEEE 5th Global Conference on Consumer Electronics, Kyoto, 2016, pp. 1–2. doi: 10.1109/GCCE.2016.7800404 (inteligentny but).
- [10] Huang H., T. Gong, N. Ye; R. Wang, Y. Dou, “Private and Secured Medical Data Transmission and Analysis for Wireless Sensing Healthcare System”, in IEEE Transactions on Industrial Informatics, vol.PP, no.99, pp.1–1, doi: 10.1109/TII.2017.2687618.
- [11] Sawand A., S. Djahel, Z. Zhang and F. Na-t-Abdesselam, “Toward energy-efficient and trustworthy eHealth monitoring system,” in China Communications, vol. 12, no. 1, pp. 46–65, Jan. 2015. doi: 10.1109/ CC.2015.7084383.
- [12] Hausman S., Ł. Januszkiewicz, “Impact of Indoor Environment on Path Loss in Body Area Networks”. Sensors 2014, 14, 19551–19560.
- [13] Januszkiewicz Ł., S. Hausman, I. Nowak, I. Krucińska, “Textile vee antena made with pvd process”, ISEF 2013 – XVI International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Conference Proceedings on USB.
- [14] NB-IOT – Enabling New Business Opportunities, Huawei White Paper, 2015, http://www.huawei.com/minisite/iot/img/nb_iot_whitepaper_en.pdf.
- [15] A technical overview of LoRa® and LoRaWAN, November 2015, https://www.lora-alliance.org/portals/0/documents/whitepapers/ LoRaWAN101.pdf.
- [16] Radio Technology Keypoints, https://www.sigfox.com/en/sigfox-iot-radio-technology.
- [17] Wi-SUN Alliance, https://www.wi-sun.org/index.php/en/.
- [18] Dash7 alliance, http://www.dash7-alliance.org/.
- [19] Ergeerts G.et al., “DASH7 Alliance Protocol in Monitoring Applications,” 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Kraków, 2015, pp. 623–628. doi: 10.1109/3PGCIC.2015.93.
- [20] Weyn M., G. Ergeerts, R. Berkvens, B. Wojciechowski, Y. Tabakov, “DASH7 alliance protocol 1.0: Low-power, mid-range sensor and actuator communication”, 2015 IEEE Conference on Standards for Communications and Networking (CSCN), Tokyo, 2015, pp. 54–59. doi: 10.1109/CSCN.2015.7390420.
- [21] RPMA Technology, Ingenu, https://www.ingenu.com/technology/rpma/.
- [22] Raza U., P. Kulkarni, M. Sooriyabandara, “Low Power Wide Area Networks: An Overview”, IEEE Communications Surveys & Tutorials, vol.PP, no.99, pp.1–1 doi: 10.1109/COMST.2017.2652320.
- [23] Nolan K. E., W. Guibene, and M. Y. Kelly, “An evaluation of low power wide area network technologies for the internet of things”, in 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Sept 2016, pp. 439–444.
- [24] Comparison Table of Low Power WAN Standards for Industrial Applications. [Online]. Available: http://www.cnx-software. com/2015/09/21/comparison-table-of-low-power-wan-standardsfor- industrial-applications/.
- [25] “Cellular Networks for Massive IoT,” Ericsson White Paper, Jan. 2016; https://www.ericsson.com/res/docs/whitepapers/wp_iot.pdf.
- [26] Shariatmadari H. et al., “Machine-Type Communications: Current Status and Future Perspectives toward 5G Systems”. IEEE Commun. Mag., vol. 53, no. 9, Sept. 2015, pp. 10–17.
- [27] 3GPP TR 45.820 V13.1.0 (2015-11), “Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things,” Nov. 2015, http://www.3gpp.org/ftp/Specs/ archive/45_series/45.820/45820-d10. zip.
- [28] Ericsson and Nokia Networks, “Further LTE Physical Layer Enhancements for MTC”, RP-141660, 3GPP TSG RAN Meeting #65, Sept. 2014; http://www.3gpp.org/ftp/tsg_ ran/tsg_ran/TSGR_65/Docs/ RP-141660.zip.
- [29] Qualcomm, Inc., “Narrowband IoT (NB-IoT)”, RP-151621, 3GPP TSG RAN Meeting #69, Sept. 2015; http://www.3gpp.org/ftp/tsg_ran/ TSG_RAN/TSGR_69/Docs/RP-151621.zip.
- [30] GPP TS36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Physical Channels and Modulation”, 13.3.0, Sept. 2016, http:// www.3gpp.org/ftp//Specs/ archive/36_series/36.211/36211-d30.zip.
- [31] Maloberti F., E. Bonizzoni, P. B. Basyurt, “Very-low-voltage and ultralow- power analog circuits for nomadic applications”, 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianopolis, 2016, pp. 403-410. doi: 10.1109/LASCAS.2016.7451095.
- [32] Armstrong T., “Power Management for Energy Harvesting in WSNs”, http://electronics360.globalspec.com/article/4309/power-management- for-energy-harvesting-in-wsns, 12 June 2014.
- [33] Vullers R.J.M., R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens. “Micropower energy harvesting”, Solid-State Electronics no. 53, 2009, str. 684-693.
- [34] Atallah R., M. Khabbaz, C. Assi, “Energy harvesting in vehicular networks: a contemporary survey”, IEEE Wireless Communications, vol. 23, no. 2, str. 70-77, April 2016. doi: 10.1109/MWC.2016.7462487.
- [35] Soyata T., L. Copeland, W. Heinzelman, “RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology, ” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 22–57, Firstquarter 2016. doi: 10.1109/MCAS.2015.2510198.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-718ee07b-f902-4b33-a5f4-78336434ee7a