PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relative wettability measurement of porous diffuser and its impact on the generated bubble size

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Controlling the bubble size is a major concern in enhancing transport performance in gas-liquid systems. The role of wettability of diffuser surface on bubble size is the subject of the current work. The study inspects the contact angle of a set of liquids on HP ceramic diffusers using the Washburn method. The results demonstrate that organic liquids like toluene, methanol–water (1:1 v/v), ethanol– water (1:1 v/v) and decane have small contact angles of 12.9, 37.5, 24.4 and 22.5 respectively. Water has a lower wettability than the organic compounds where the contact angle was about 67.4. The effect of wettability of the bubble size is investigated by measuring the size of air bubble produced using the same diffuser material. The results of bubble size measurement demonstrates that with liquids of small contact angle, i.e. good wetting properties, small bubble sizes are produced in comparison with liquids with a higher contact angle. The study demonstrates the viability of Washburn method in characterization of wettability of porous diffuser, which was verified by measuring the bubble size produced. A high reduction in bubble size can be obtained by a carefully chosen diffuser material that provides better wettability.
Rocznik
Strony
45--–55
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
Twórcy
  • Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Al-jadriya, Iraq
  • Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Bibliografia
  • 1. Alghunaim A., Kirdponpattara S., Newby B.M.Z., 2016. Techniques for determining contact angle and wettability of powders. Powder Technol., 287, 201-215. DOI: 10.1016/j.powtec.2015.10.002.
  • 2. Al-yaqoobi A., Hogg D., Zimmerman W.B., 2016. Microbubble distillation for ethanol–water separation. Int. J. Chem. Eng., 2016, 5210865. DOI: 10.1155/2016/5210865.
  • 3. Byakova A.V, Gnyloskurenko S.V, Nakamura T., Raychenko O.I., 2003. Influence of wetting conditions on buble formation at orifice in an inviscid liquid: Mechanism of bubble evolution. Colloids Surf., A, 229, 19–32. DOI:10.1016/j.colsurfa.2003.08.009.
  • 4. Chen F., Finch J.A., Gomez C.O., Xu Z., 2002. Wettability effect on bubble formation at a rigid porous sparger. Can. Metall. Q., 41, 273–280. DOI: 10.1179/cmq.2002.41.3.273.
  • 5. Dang-Vu T, Hupka J., 2005. Characterization of porous materials by capillary rise method. Physicochem. Probl. Miner. Process., 39, 47–65.
  • 6. dos Reis E.J.F.B., Carvalho F.M., de Araújo T.M., Porto L.A., Silvany Neto A.M., 2009. Work and psychological distress among public school teachers in Vitória da Conquista, Bahia State, Brazil. Cad. Saúde Pública, 21,1480–90. DOI: 10.1590/S0102-311X2005000500021.
  • 7. Galet L., Patry S., Dodds J., 2010. Determination of the wettability of powders by the Washburn capillary rise method with bed preparation by a centrifugal packing technique. J. Colloid Interface Sci., 346, 470–475. DOI:10.1016/j.jcis.2010.02.051.
  • 8. Hanotu J., Bandulasena H.C.H., Chiu T.Y., Zimmerman W.B., 2013. Oil emulsion separation with fluidic oscillator generated microbubbles. Int. J. Multiph. Flow, 56, 119–125. DOI: 10.1016/j.ijmultiphaseflow.2013.05.012.
  • 9. Hanotu J., Karunakaran E., Bandulasena H., Biggs C., Zimmerman W.B., 2014. Harvesting and dewatering yeast by microflotation. Biochem. Eng. J., 82, 174–182. DOI: 10.1016/j.bej.2013.10.019.
  • 10. Kalogianni E.P., Savopoulos T., Karapantsios T.D., Raphaelides S.N., 2004. A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets. Colloids Surf., B, 35, 159–167. DOI: 10.1016/j.colsurfb.2004.03.008.
  • 11. Kantarci N., Borak F., Ulgen K.O., 2005. Bubble column reactors. Process Biochem., 40, 2263–2283. DOI: 10.1016/j.procbio.2004.10.004.
  • 12. Kilau H.W., Pahlman J.E., 1987. Coal wetting ability of surfactant solutions and the effect of multivalent anion additions. Colloids Surf., 26, 217–242. DOI: 10.1016/0166-6622(87)80118-X.
  • 13. Kirdponpattara S., Phisalaphong M., Newby B.Z., 2013. Applicability of Washburn capillary rise for determining contact angles of powders/porous materials. J. Colloid Interface Sci., 397, 169–176. DOI: 10.1016/j.jcis.2013.01.033.
  • 14. Klein N.S., Bachmann J., Aguado A., Toralles-Carbonari B., 2012. Evaluation of the wettability of mortar component granular materials through contact angle measurements. Cem. Concr. Res., 42, 1611–1620. DOI: 10.1016/j.cemconres.2012.09.001.
  • 15. Liow J.L., Gray N.B., 1988. A model of bubble growth in wetting and non-wetting liquids. Chem. Eng. Sci., 43, 3129–3139. DOI: 10.1016/0009-2509(88)85122-4.
  • 16. Mirsandi H., Smit W.J., Kong G., Baltussen M.W., Peters E.A.J.F., Kuipers J.A.M., 2020. Influence of wettingconditions on bubble formation from a submerged orifice. Exp. Fluids, 61, 83. DOI: 10.1007/s00348-020-2919-7.
  • 17. Nashmi O.A., Mohammed A.A., Abdulrazzaq N.N., 2020. Investigation of ozone microbubbles for the degradation of methylene orange contaminated wastewater. Iraqi J. Chem. Pet. Eng., 21, 25–35. DOI: 10.31699/ijcpe.2020.2.4.
  • 18. Neirinck B., Van Deursen J., Van der Biest O., Vleugels J., 2010. Wettability assessment of submicrometer alumina powder using a modified washburn method. J. Am. Ceram. Soc., 93, 2515–2518. DOI: 10.1111/j.1551-2916.2010.03854.x.
  • 19. Nowak E., Combes G., Stitt E.H., Pacek A.W., 2013. A comparison of contact angle measurement techniques applied to highly porous catalyst supports. Powder Technol., 233, 52–64. DOI: 10.1016/j.powtec.2012.08.032.
  • 20. Quéré D., 1997. Inertial capillarity. Europhys. Lett., 39, 533–538. DOI: 10.1209/epl/i1997-00389-2.
  • 21. Rulison C., 1996. Wettability studies for porous solids. Krüss Laboratory Services and Instrumentation for Surface Science, 1–34.
  • 22. Shang J., Flury M., Harsh J.B., Zollars R.L., 2008. Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interface Sci., 328, 299–307. DOI: 10.1016/j.jcis.2008.09.039.
  • 23. Siebold A., Nardin M., Schultz J., 2000. Effect of dynamic contact angle on capillary rise phenomena. Colloids Surf., A, 161, 81–87. DOI: 10.1016/S0927-7757(99)00327-1.
  • 24. Siebold A., Walliser A., Nardin M., Oppliger M., Schultz J., 1997. Capillary rise for thermodynamic characterization of solid particle surface. J. Colloid Interface Sci., 186, 60–70. DOI: 10.1006/jcis.1996.4640.
  • 25. Varadaraj R., Bock J., Brons N., Zushma S., 1994. Influence of surfactant structure on wettability modification of hydrophobic granular surfaces. J. Colloid Interface Sci., 167, 207–210. DOI: 10.1006/jcis.1994.1350.
  • 26. Wesley D.J., Smith R.M., Zimmerman W.B., Howse J.R., 2016. Influence of surface wettability on microbubble formation. Langmuir, 32, 1269–1278. DOI: 10.1021/acs.langmuir.5b03743.
  • 27. Worden R.M., Bredwell M.D., 1998. Mass-transfer properties of microbubbles. 2. Analysis using a dynamic model. Biotechnol. Progr., 14, 39–46. DOI: 10.1021/bp970131c.
  • 28. Zimmerman W.B., Tesař V., Bandulasena H.C.H., 2011a. Towards energy efficient nanobubble generation with fluidic oscillation. Curr. Opin. Colloid Interface Sci., 16, 350-356. DOI: 10.1016/j.cocis.2011.01.010.
  • 29. Zimmerman W.B., Zandi M., Bandulasena H.C.H., Tesař V., Gilmour D.J., Ying K., 2011b. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Appl. Energy, 88, 3357–3369. DOI: 10.1016/j.apenergy.2011.02.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7186ac5e-54e1-4173-b61c-7a9b6c77d4a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.