Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Knowing how to identify terrain types is especially important in the autonomous navigation, mapping, decision making and emergency landings areas. For example, an unmanned aerial vehicle (UAV) can use it to find a suitable landing position or to cooperate with other robots to navigate across an unknown region. Previous works on terrain classification from RGB images taken onboard of UAVs shown that only static pixel-based features were tested with a considerable classification error. This paper presents a computer vision algorithm capable of identifying the terrain from RGB images with improved accuracy. The algorithm complement the static image features and dynamic texture patterns produced by UAVs rotors downwash effect (visible at lower altitudes) and machine learning methods to classify the underlying terrain. The system is validated using videos acquired onboard of a UAV with a RGB camera.
Rocznik
Tom
Strony
84--93
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
autor
- Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
autor
- Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71842155-b82f-40d3-beb9-8401adae8a12