Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Knowing how to identify terrain types is especially important in the autonomous navigation, mapping, decision making and emergency landings areas. For example, an unmanned aerial vehicle (UAV) can use it to find a suitable landing position or to cooperate with other robots to navigate across an unknown region. Previous works on terrain classification from RGB images taken onboard of UAVs shown that only static pixel-based features were tested with a considerable classification error. This paper presents a computer vision algorithm capable of identifying the terrain from RGB images with improved accuracy. The algorithm complement the static image features and dynamic texture patterns produced by UAVs rotors downwash effect (visible at lower altitudes) and machine learning methods to classify the underlying terrain. The system is validated using videos acquired onboard of a UAV with a RGB camera.
Rocznik
Tom
Strony
84--93
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
autor
- Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
autor
- Computational Intelligence Group of CTS/UNINOVA, FCT, University NOVA of Lisbon
Bibliografia
- [1] Y. Bestaoui Sebbane, Intelligent Autonomy of UAVs: advanced missions and future use, number no. 3 in Chapman & Hall/CRC artificial intelligence and robotics, Chapman and Hall/CRC: Boca Raton, FL, 2018.
- [2] F. Ebadi and M. Norouzi, “Road Terrain detection and Classification algorithm based on the Color Feature extraction”. In: 2017 Artificial Intelligence and Robotics (IRANOPEN), 2017, 139–146, 10.1109/RIOS.2017.7956457.
- [3] G. Farnebäck, “Two-Frame Motion Estimation Based on Polynomial Expansion”. In: J. Bigun and T. Gustavsson, eds., Image Analysis, 2003, 363–370.
- [4] Q. Feng, J. Liu, and J. Gong, “UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis”, Remote Sensing, vol. 7, no. 1, 2015, 1074–1094, 10.3390/rs70101074.
- [5] A. Giusti, J. Guzzi, D. C. Cireşan, F. He, J. P. Rodrı́guez, F. Fontana, M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, and L. M. Gambardella, “A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots”, IEEE Robotics and Automation Letters, vol. 1, no. 2, 2016, 661–667, 10.1109/LRA.2015.2509024.
- [6] W. Gruszczyński, W. Matwij, and P. Ćwiąkała,“Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as datasource methods for terrain covered in low vegetation”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 126, 2017, 168–179, 10.1016/j.isprsjprs.2017.02.015.
- [7] B. Heung, H. C. Ho, J. Zhang, A. Knudby, C. E. Bulmer, and M. G. Schmidt, “An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping”, Geoderma, vol. 265, 2016, 62–77, 10.1016/j.geoderma.2015.11.014.
- [8] Y. N. Khan, P. Komma, K. Bohlmann, and A. Zell, “Grid-based visual terrain classification for outdoor robots using local features”. In: 2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings, 2011, 16–22, 10.1109/CIVTS.2011.5949534.
- [9] J. P. Matos-Carvalho, J. M. Fonseca, and A. D. Mora, “UAV downwash dynamic texture features for terrain classification on autonomous navigation”. In: Annals of Computer Science and Information Systems, vol. 15, 2018, 1079–1083.
- [10] A. Mora, T. M. A. Santos, S. Łukasik, J. M. N. Silva, A. J. Falcão, J. M. Fonseca, and R. A. Ribeiro, “Land Cover Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study”, Information, vol. 8, no. 4, 2017, 147, 10.3390/info8040147.
- [11] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer Vision Using Local Binary Patterns, number Volume 40 in Computational Imaging and Vision, Springer: London, 2011.
- [12] E. Pinto, F. Marques, R. Mendonça, A. Lourenço, P. Santana, and J. Barata, “An autonomous surface-aerial marsupial robotic team for riverine environmental monitoring: Benefiting from coordinated aerial, underwater, and surface level perception”. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), 2014, 443–450, 10.1109/ROBIO.2014.7090371.
- [13] R. Pombeiro, R. Mendonça, P. Rodrigues, F. Marques, A. Lourenço, E. Pinto, P. Santana, and J. Barata, “Water detection from downwash-induced optical flow for a multirotor UAV”. In: OCEANS 2015 - MTS/IEEE Washington, 2015, 1–6, 10.23919/OCEANS.2015.7404458.
- [14] L. Wallace, A. Lucieer, Z. Malenovský, D. Turner, and P. Vopěnka, “Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds”, Forests, vol. 7, no. 3, 2016, 62, 10.3390/f7030062.
- [15] W. Y. Yan, A. Shaker, and N. El-Ashmawy, “Urban land cover classification using airborne LiDAR data: A review”, Remote Sensing of Environment, vol. 158, 2015, 295–310, 10.1016/j.rse.2014.11.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71842155-b82f-40d3-beb9-8401adae8a12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.