PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The correlation of water quality parameters over wireless sensors generated dataset in the Sitnica River in Kosovo

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the regression analysis technique is applied to a large water quality dataset for the Sitnica River in Kosovo. It has been done to assess the correlation between water quality parameters. The data are generated by a wireless sensors network deployed in Sitnica. A regression analysis is applied to four water quality parameters: temperature, dissolved oxygen, pH, and electrical conductivity. The correlation between each pair of parameters has been assessed by using the WEKA software package, which is a popular time-saving tool for data analysis in distinct domains. The data are pre-processed to exclude out-of-range values and then the assessment of correlation for the pairs of parameters is applied. In comparison to other pairs of water quality parameters, the results show that dissolved oxygen and electrical conductivity correlate particularly closely with temperature. Regression equations of these two pairs of parameters may provide inferred information on dissolved oxygen and electrical conductivity about the Sitnica River. Such information may otherwise not be available to resource managers in Kosovo. Moreover, due to its easy to use and availability as an open-source software, WEKA may aid decision-makers on the management providing almost real-time information about surface water quality within the basin. This can be particularly useful especially in the case of continuous observation of water quality and a huge dataset gathered by using wireless sensors.
Wydawca
Rocznik
Tom
Strony
8--12
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
  • The University of Prishtina, Faculty of Civil Engineering, Hydrotechnic Department, Rr. Agim Ramadani, ndërtesa e “Fakultetit Teknik”, 10000 Prishtina, Kosovo
  • The University of Prishtina, Faculty of Civil Engineering, Hydrotechnic Department, Rr. Agim Ramadani, ndërtesa e “Fakultetit Teknik”, 10000 Prishtina, Kosovo
Bibliografia
  • Ahmedi, F. et al. (2018) “InWaterSense: An intelligent wireless sensor network for monitoring surface water quality to a river in Kosovo,” International Journal of Agricultural and Environmental Information Systems, 9(1), pp. 39–61. Available at: https://doi.org/10.4018/IJAEIS.2018010103.
  • Bhat, S.A. et al. (2014) “Statistical assessment of water quality parameters for pollution source identification in Sukhnag Stream: An inflow stream of Lake Wular (Ramsar Site), Kashmir Himalaya,” Journal of Ecosystems, 2014, pp. 1–18. Available at: https://doi.org/10.1155/2014/898054.
  • Bisht, A.K. et al. (2018) “Development of an automated water quality classification model for the River Ganga,” in Communications in computer and information science. Springer Science+Business Media, pp. 190–198. Available at: https://doi.org/10.1007/978-981-10-8657-1_15.
  • DHI Gras Solution (2000) Water quality monitoring from space: Baselines and up-to-date information. [Online]. Available at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=-web&cd=&ved=2ahUKEwi-ud-E98yAAxW6JRAIHS-7CKAQF-noECBcQAQ&url=https%3A%2F%2Fwww.dhigroup.com%2F-%2Fmedia%2Fshared%2520content%2Fdhi%2Fflyers%2520and%2520pdf%2Fsolution%2520flyers%2Fwater%2520quality%2520monitoring%2520from%2520space%2520-%2520dhi%2520gras%2520solution.pdf&usg=AOvVaw3DM9Dg-qAfh1Bdp8HQVBODS&opi=89978449 (Accessed: September 14, 2022).
  • El-Korashey, R. (2009) “Using regression analysis to estimate water quality constituents in Bahr El Baqar drain,” Journal of Applied Sciences Research, 5(8), pp. 1067–1076.
  • Faustine, A. and Mvuma, A.N. (2014) “Ubiquitous mobile sensing for water quality monitoring and reporting within Lake Victoria basin,” Wireless Sensor Network, 06(12), pp. 257–264. Available at: https://doi.org/10.4236/wsn.2014.612025.
  • Gakii, C. and Jepkoech, J. (2019) “A classification model for water quality analysis using decision tree,” Journal of Chemical Information and Modeling, 7(3), pp. 1–8.
  • GWA-DW (2009) Water quality monitoring program design – A guideline for field sampling for surface water quality. Perth: Government of Western Australia Department of Water. Available at: https://www.wa.gov.au/system/files/2023-05/water-quality-monitoring-program-design-a-guideline.pdf (Accessed: September 14, 2022).
  • Helsel, D.R. et al. (2020) “Statistical methods in water resources,” Techniques and methods. Book 4, Chap. A3. U.S. Geological Survey Techniques and Methods. Available at: https://doi.org/10.3133/tm4a3.
  • Khatoon, N. et al. (2013) “Correlation study for the assessment of water quality and its parameters of Ganga River, Kanpur, Uttar Pradesh, India,” IOSR Journal of Applied Chemistry, 5(3), pp. 80–90. Available at: https://doi.org/10.9790/5736-0538090.
  • Maasdam, R. (2000) Exploratory data analysis in water quality monitoring systems. MSc Thesis. University of Salford. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ed9150ff41e4a34b3b11b3b124552a689849cffc (Accessed: February 22, 2022).
  • Malik, H. and Szwilski, A.B. (2016) “Towards monitoring the water quality using hierarchal routing protocol for wireless sensor networks,” Procedia Computer Science, 98, pp. 140–147. Available at: https://doi.org/10.1016/j.procs.2016.09.022.
  • Manjarrés, C.R. et al. (2016) “Chemical sensor network for pH monitoring,” Journal of Applied Research and Technology, 14(1), pp. 1–8. Available at: https://doi.org/10.1016/j.jart.2016.01.003.
  • Muhammad, S.M. et al. (2015) “Classification model for water quality using machine learning techniques,” International Journal of Software Engineering and Its Applications, 9(6), pp. 45–52.
  • O’Flynn, B. et al. (2007) “SmartCoast: A wireless sensor network for water quality monitoring,” 32nd IEE Conference on Local Computer Networks, pp. 815–816. Available at: https://doi.org/10.1109/LCN.2007.34.
  • O’Flynn, B. et al. (2010) “Experiences and recommendations in deploying a real-time, water quality monitoring system,” Measurement Science and Technology, 21(12), 124004. Available at: https://doi.org/10.1088/0957-0233/21/12/124004.
  • Pejman, A.H. et al. (2009) “Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques,” International Journal of Environmental Science and Technology, 6(3), pp. 467–476. Available at: https://doi.org/10.1007/BF03326086.
  • Pule, M., Yahya, A. and Chuma, J. (2017) “Wireless sensor networks: A survey on monitoring water quality,” Journal of Applied Research and Technology, 15(6), pp. 562–570. Available at: https://doi.org/10.1016/j.jart.2017.07.004.
  • Salah, H.A., Mocanu, M. and Florea, A. (2014) “Analysis of data mining tools used for water resources management in Tigris River,” Advanced Management Science, 3(2), pp. 1–10.
  • Sasikala, R. (2017) “A comparative analysis for smart water resource using data mining tools,” International Journal of Research – Granthaalayah, 5(7(SE)), pp. 24–30. Available at: https://doi.org/10.29121/granthaalayah.v5.i7(se).2017.2039.
  • Sperling von, M. (2015) Wastewater characteristics, treatment and disposal. Vol. 6: Sludge treatment and disposal. London: IWA Publishing. Available at: https://doi.org/10.2166/9781780402086.
  • UN (2015) Goal 6: Ensure access to water and sanitation for all. [Online]. The Sustainable Development Goals. Available at: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (Accessed: April 04, 2021).
  • Varol, M., Gökot, B. and Bekleyen, A. (2010) “Assesment of water pollution in the Tigris River in Diyarbakır, Turkey,” Water Practice & Technology, 5(1). Available at: https://doi.org/10.2166/wpt.2010.021.
  • Ward, R., Loftis, J.C. and McBride, G.B. (1986) “The ‘data-rich but information-poor’ syndrome in water quality monitoring,” Environmental Management, 10(3), pp. 291–297. Available at: https://doi.org/10.1007/bf01867251.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7180b442-d876-4838-bef5-1fd90bd824de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.