PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complex dose rate calculations in luminescence dating of lacustrine and palustrine sediments from Niederweningen, Northern Switzerland

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focusses on dose rate determination in complex settings in two drill cores from the site of Niederweningen, northern Switzerland. A crosscheck with a certified standard material and neutron activation analyses (NAA) reveals an overall good performance of high-resolution gamma spectrometry (HR-GS) when determining dose rate-relevant elements. A second focus is on average water content during burial, by comparing measured sediment moisture with water uptake capability. Furthermore, layer models are used to investigate the impact of inhomogeneous stratification on dose rate. Finally, different scenarios to correct for radioactive disequilibrium in the uranium decay chain are investigated. While most of the applied corrections appear to have only a minor to moderate effect on age calculation, the results for one core are contradictory. Possibly, some of the applied correction scenarios are not reflecting the complex natural setting sufficiently, in particular average sediment moisture during burial and the timing of radioactive disequilibrium might be incorrectly estimated. While deposition in one core can be quite securely attributed to the period 100–70 ka, assigning the sediment sequence in the other core to the time between ca. 130 ka and 90 ka remains to some extent insecure.
Wydawca
Czasopismo
Rocznik
Strony
28--49
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Institute of Earth and Environmental Science, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
  • ADD Ideas, Zum Erzengel Michael 19, 01723 Mohorn, Germany
  • Institute of Earth and Environmental Science, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
  • Institute of Earth and Environmental Science, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
  • Energy and Sustainability Research Institute Groningen, University of Groningen, Nijenborgh 6, 9747 AG Groningen, The Netherlands
Bibliografia
  • 1. Abdulkarim M, Grema HM, Adamu IH, Mueller D, Schulz M, Ulbrich M, Miocic J and Preusser F, 2021. Effect of using different chemical dispersing agents in grain size analyses of fluvial sediments via laser diffraction spectrometry. Methods and Protocols 4(3): 44, DOI 10.3390/mps4030044.
  • 2. Aitken MJ, 1985. Thermoluminescence dating. Academic Press, Orlando/London, 351pp.
  • 3. Andrieux E, Bateman M and Bertran P, 2018. The chronology of Late Pleistocene thermal contraction cracking derived from sand wedge OSL dating in central and southern France. Global and Planetary Change 162: 84–100, DOI 10.1016/j.gloplacha.2018.01.012.
  • 4. Anselmetti FS, Drescher-Schneider R, Furrer H, Graf HR, Lowick SE, Preusser F and Riedi MA, 2010. A ∼180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland). Swiss Journal of Geosciences 103(2): 345–361, DOI 10.1007/s00015-010-0041-1.
  • 5. Brennan BJ, Schwartz HP and Rink WJ, 1997. Simulation of the gamma radiation field in lumpy environments. Radiation Measurements 27(2): 299–305, DOI 10.1016/S1350-4487(96)00133-3.
  • 6. Burbidge CI, Duller GAT and Roberts HM, 2006. De determination for young samples using the standardised OSL response of coarse-grain quartz. Radiation Measurements 41(3): 278–288, DOI 10.1016/j.radmeas.2005.06.038.
  • 7. Bureau Veritas, 2019. Method summary – Multi-Element Neutron Activation Analyses. Document #: BQL SOP-00001.
  • 8. Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007.
  • 9. Degering D and Degering A, 2020. Change is the only constant – Time-dependent dose rates in luminescence dating. Quaternary Geochronology 58: 101074, DOI 10.1016/j.quageo.2020.101074.
  • 10. Dehnert A, Lowick SE, Preusser F, Anselmetti FS, Drescher-Schneider R, Graf HR, Heller F, Horstmeyer H, Kemna HA, Nowaczyk NR, Züger A and Furrer H, 2012. Evolution of an overdeepened trough in the northern Alpine Foreland at Niederweningen, Switzerland. Quaternary Science Reviews 34: 127–145, DOI 10.1016/j.quascirev.2011.12.015.
  • 11. Frechen M, Schweitzer U and Zander A, 1996. Improvements in sample preparation for the fine grain technique. Ancient TL 14(2): 15–17. http://ancienttl.org/ATL_14.htm.
  • 12. Furrer H, Graf HR and Mäder A, 2007. The mammoth site of Niederweningen, Switzerland. Quaternary International 164/165: 85–97, DOI 10.1016/j.quaint.2006.10.012.
  • 13. Graf HR, 1993. Die Deckenschotter der zentralen Nordschweiz. Diss. ETH Zürich Nr. 10205.
  • 14. Greenberg RR, Bode P and De Nadai Fernandes EA, 2011. Neutron activation analysis: A primary method of measurement. Spectrochimica Acta Part B: Atomic Spectroscopy 66(3–4): 193–241, DOI 10.1016/j.sab.2010.12.011.
  • 15. Guérin G, 2018. Innovative dose rate determinations for luminescence dating. Elements 14(1): 15–20, DOI 10.2138/gselements.14.1.15.
  • 16. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29(1): 5–8, http://ancienttl.org/ATL_29.htm.
  • 17. Guibert P, Lahaye C and Bechtel F, 2009. The importance of U-series disequilibrium of sediments in luminescence dating: A case study at the Roc de Marsal Cave (Dordogne, France). Radiation Measurements 44(3): 223–231, DOI 10.1016/j.radmeas.2009.03.024.
  • 18. Hajdas I, Bonani G, Furrer HH, Mäder A and Schoch W, 2007. Radiocarbon chronology of the mammoth site at Niederweningen, Switzerland: Results from dating bones, teeth, wood, and peat. Quaternary International 164/165: 98–105, DOI 10.1016/j.quaint.2006.10.007.
  • 19. Heiri O, Koinig KA, Spötl C, Barrett S, Brauer A, Drescher-Schneider R, Gaar D, Ivy-Ochs S, Kerschner H, Luetscher M, Moran A, Nicolussi K, Preusser F, Schmidt R, Schoeneich P, Schwörer C, Sprafke T, Terhorst B and Tinner W, 2014. Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands. Quaternary Science Reviews 106: 186–205, DOI 10.1016/j.quascirev.2014.05.021.
  • 20. Heiri O, Lotter A and Lemcke G, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1): 101–110, DOI 10.1023/A:1008119611481.
  • 21. Huat BBK, Kazemian S, Prasad A and Barghchi M, 2011. State of an art review of peat: General perspective. International Journal of the Physical Sciences 6(8): 1988–1996, DOI 10.5897/IJPS11.192.
  • 22. IAG (International Association of Geoanalysts), 2022. Reference material data sheet Koeln Loess (UoK). http://iageo.com/uok-loess/.
  • 23. Ivanovich M and Harmon RS, eds., 1992. Uranium series disequilibrium applications to environmental problems. University Press, Oxford.
  • 24. Juschus O, Preusser F, Melles M and Radtke U, 2007. Applying SAR-IRSL methodology for dating fine-grain sediments from Lake El’gygytgyn, northeastern Siberia. Quaternary Geochronology 2(1–4): 187–194, DOI 10.1016/j.quageo.2006.05.006.
  • 25. Kaufhold S and Dohrmann R, 2008. Comparison of the traditional Enslin-Neff method and the modified Dieng method for measuring water-uptake capacity. Clays and Clay Minerals 56(6): 686–692, DOI 10.1346/CCMN.2008.0560609.
  • 26. Krbetschek MR, Rieser U, Zöller L and Heinicke J, 1994. Radioactive disequilibria in palaeodosimetric dating of sediments. Radiation Measurements 23(2–3): 485–489, DOI 10.1016/1350-4487(94)90083-3.
  • 27. Laul JC, 1979. Neutron activation analysis of geological materials. Atomic Energy Review 17(3): 603–695.
  • 28. Lowick SE and Preusser F, 2009. A method for retrospectively calculating water content for desiccated core samples. Ancient TL 27(1): 9–14. http://ancienttl.org/ATL_27.htm.
  • 29. Lukas S, Preusser F, Anselmetti FS and Tinner W, 2012. Testing the potential of luminescence dating of high-alpine lake sediments. Quaternary Geochronology 8: 23–32, DOI 10.1016/j.quageo.2011.11.007.
  • 30. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X.
  • 31. Murray AS, Buylaert JP and Thiel C, 2015. A luminescence dating intercomparison based on a Danish beach-ridge sand. Radiation Measurements 81: 32–38, DOI 10.1016/j.radmeas.2015.02.012.
  • 32. Murton JB, 2021. What and where are periglacial landscapes? Permafrost and Periglacial Processes 32(2): 186–212, DOI 10.1002/ppp.2102.
  • 33. Nathan R and Mauz B, 2008. On the dose-rate estimate of carbonate-rich sediments for trapped charge dating. Radiation Measurements 81(1): 14–25, DOI 10.1016/j.radmeas.2007.12.012.
  • 34. Nelson MS and Rittenour TM, 2015. Using grain-size characteristics to model soil water content: Application to dose-rate calculation for luminescence dating. Radiation Measurements 81: 142–149, DOI 10.1016/j.radmeas.2015.02.016.
  • 35. Niese S, Koehler M and Gleisberg B, 1998. Low-level counting techniques in the underground laboratory “Felsenkeller” in Dresden. Journal of Radioanalytical and Nuclear Chemistry 233: 167–172, DOI 10.1007/BF02389666.
  • 36. Olley J, Murray A and Roberts RG, 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews 15(7): 751–760, DOI 10.1016/0277-3791(96)00026-1.
  • 37. Potts PJ, Thompson M, Chenery SR, Webb PC and Kasper HU, 2003. GEOPT13 – an international proficiency test for analytical geochemistry laboratories – report on round 13/July 2003 (Koeln Loess). International Association of Geoanalysts. https://geoanalyst.org/wp-content/uploads/2017/10/GeoPT13Report.pdf.
  • 38. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.
  • 39. Prescott JR and Hutton JT, 1995. Environmental dose rates and radioactive disequilibrium from some Australian dating sites. Quaternary Science Reviews 14(4): 439–448, DOI 10.1016/0277-3791(95)00037-2.
  • 40. Preusser F, 2004. Towards a chronology of the Late Pleistocene in the northern Alpine Foreland. Boreas 33(3): 195–210, DOI 10.1111/j.1502-3885.2004.tb01141.x.
  • 41. Preusser F and Degering D, 2007. Luminescence dating of the Niederweningen mammoth site, Switzerland. Quaternary International 164/165: 106–112, DOI 10.1016/j.quaint.2006.12.002.
  • 42. Preusser F, Graf HR, Keller O, Krayss E and Schlüchter C, 2011. Quaternary glaciation history of northern Switzerland. E&G Quaternary Science Journal 60(2–3): 282–305, DOI 10.3285/eg.60.2-3.06.
  • 43. Rittenour TM, 2018. Dates and rates of earth-surface processes revealed using luminescence dating. Elements 14(1): 21–26, DOI 10.2138/gselements.14.1.21.
  • 44. Smedley RK and Pearce NJG, 2016. Internal U, Th and Rb concentrations of alkali-feldspar grains: Implications for luminescence dating. Quaternary Geochronology 35: 16–25, DOI 10.1016/j.quageo.2016.05.002.
  • 45. Welten M 1988. Neue pollenanalytische Ergebnisse über das Jüngere Quartär des nördlichen Alpenvorlandes der Schweiz (Mittel- und Jungpleistozän). Beiträge zur geologischen Karte der Schweiz – Neue Folge: 162, 40 pp.
  • 46. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41: 369–391, DOI 10.1016/j.radmeas.2005.11.001.
  • 47. Zander A, Degering D, Preusser F, Kasper HU and Brückner H, 2007. Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE.: Radioactive disequilibria in the uranium decay series. Quaternary Geochronology 2(1–4): 123–128, DOI 10.1016/j.quageo.2006.04.003.
  • 48. Zimmerman DW, 1971. Thermoluminescent dating using fine grains from pottery. Archaeometry 13(1): 29–52, DOI 10.1111/j.1475-4754.1971.tb00028.x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-717c686a-511a-44b3-b75e-b93b537b4dee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.