Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: of the paper is to proceed with a short introduction and review of lasers for materials processing, showing that they have been used for marking, machining, treating, welding, and additive manufacturing in different areas, such as can-code bar printing and aeroplane manufacturing. Design/methodology/approach: The paper proceeded with a short review and introduced the laser processing of materials based on the authors' experience. Findings: The laser processing system revenues from cutting operations attained approximately 45% of the global market, followed by 20% for welding and brazing and 10% for marking and engraving. Research limitations/implications: Laser beam welding is the principal manufacturing technology for joining applications because of its low heat input, which leads to low distortions, high welding speeds, good control of the microstructure, and flexibility. Laser-induced breakdown spectroscopy (LIBS) of potentially dangerous substances (bio-agents, drugs, and nuclei), where a very small portion of the target is burned and analysed at a secure distance. Practical implications: Laser additive manufacturing is a growing area of interest in many industries and, together with surface processing, could be a major driving force for the laser market in the coming years. The paper briefly reviews the important characteristics of each laser–material processing technology for prospective users. Originality/value: The value of this introductory review is based on previous research and contributions carried out by the authors.
Wydawca
Rocznik
Tom
Strony
17--30
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
- Photonics Division, Institute for Advanced Studies, 12228-001 Sao Jose dos Campos, SP, Brazil
autor
- Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of Sao Paulo, Cidade Universitária, Sao Paulo, Brazil
autor
- Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School, University of Sao Paulo, Cidade Universitária, Sao Paulo, Brazil
Bibliografia
- [1] T.H. Maiman, Stimulated Optical Radiation in Ruby, Nature 187 (1960) 493-494. DOI: https://doi.org/10.1038/187493a0
- [2] C.K.N. Patel, Continuous wave laser action on vibrational-rotational transitions of CO2, Physical Review 136/5A (1964) 1187-1193. DOI: http://dx.doi.org/10.1103/PhysRev.136.A1187
- [3] J.E. Geusic, H.M. Marcos, L.G. Van Uitert, Laser oscilations in Nd doped yttrium aluminium, yttrium gallium and gadolinium garnets, Applied Physics Letters 4/10 (1964) 182-184. DOI: https://doi.org/10.1063/1.1753928
- [4] J.J. Ewing, C.A. Brau, Laser action on the bands 2Σ+1/2→2Σ+1/2 of KrF and XeCl, Applied Physics Letters 27 (1975) 350-352. DOI: https://doi.org/10.1063/1.88473
- [5] D. Belforte, Market pressures dampen 2019 results: Fiber laser revenues dictate total-industry negative performance in 2019. Available from: https://www.laserfocusworld.com/industrial-laser-solutions/article/14221598/laser-market-pressures-dampen-2019-results (access in: 18.10.2024)
- [6] J.F. Ready, Industrial Application of Lasers, Second Edition, Academic Press, London, 1997.
- [7] A. Frenk, A.F.A. Hoadley, J.-D. Wagnière, In-situ technique for measuring the absorption during laser surface remelting, Metallurgical Transactions B 22 (1991) 139-141. DOI: https://doi.org/10.1007/BF02672536
- [8] E.M.R. Silva, W.A. Monteiro, W. Rossi, M.S.F. Lima, Absorption of Nd: YAG laser beam by metallic alloys, Journal of Materials Science Letters 19 (2000) 2095-2097. DOI: https://doi.org/10.1023/A:1026750004296
- [9] G. Casasanta, R. Garra, Towards a generalized Beer-Lambert law, Fractal and Fractional 2/1 (2018) 8. DOI: https://doi.org/10.3390/fractalfract2010008
- [10] G. Muthukumaran, P. Dinesh Babu, Laser transformation hardening of various steel grades using different laser types, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (2021) 103. DOI: https://doi.org/10.1007/s40430-021-02854-4
- [11] Ł. Łach, Recent advances in laser surface hardening: Techniques, modeling approaches, and industrial applications, Crystals 14/8 (2024) 726. DOI: https://doi.org/10.3390/cryst14080726
- [12] M.S.F.D. Lima, F.A. Goia, R. Riva, A.M.D. Espírito Santo, Laser surface remelting and hardening of an automotive shaft sing a high-power fiber laser, Materials Research 10/4 (2007) 461-467. DOI: https://doi.org/10.1590/S1516-14392007000400022
- [13] E. Kennedy, G. Byrne, D.N. Collins, A review of the use of high power diode lasers in surface hardening, Journal of Materials Processing Technology 155-156 (2004) 1855-1860. DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.276
- [14] H. Roozbahani, M. Alizadeh, H. Handroos, Salminen, A, Color Laser Marking: Repeatability, Stability and Resistance Against Mechanical, Chemical and Environmental Effects, IEEE Access 8 (2020) 214196-214208. DOI: https://doi.org/10.1109/ACCESS.2020.3040744
- [15] M.S.F. Lima, H. Goldenstein, Morphological instability of the austenite growth front in a laser remelted iron-carbon-silicon alloy, Journal of Crystal Growth 208/1-4 (2000) 709-716. DOI: https://doi.org/10.1016/S0022-0248(99)00460-1
- [16] M.S.F. Lima, F. Folio, S. Mischler, Microstructure and surface properties of laser-remelted titanium nitride coatings on titanium, Surface and Coatings Technology 199/1 (2005) 83-91. DOI: https://doi.org/10.1016/j.surfcoat.2004.08.206
- [17] V. Writzl, M.S.F. Lima, W.L. Guesser, F.A.A. Possoli, J.C.K. das Neves, P.C. Borges, Influence of laser-hardening on microstructure and hardness of plasma-nitrided compacted graphite iron, Optics and Laser Technology 144 (2021) 107441. DOI: https://doi.org/10.1016/j.optlastec.2021.107441
- [18] M. Liu, H. Jiang, G. Chang, Y. Xu, F. Ma, K. Xu, Effect of laser remelting on corrosion and wear resistance of Fe82Cr16SiB alloy coatings fabricated by extreme high-speed laser cladding, Materials Letters 325 (2022) 132823. DOI: https://doi.org/10.1016/j.matlet.2022.132823
- [19] V. Braga, R.H.M. Siqueira, I. Atilio, R. Mansur, D. Vieira, D.L. Chen, M.S.F. Lima, Microstructural and mechanical aspects of laser metal deposited H13 powder for die repair, Materials Today Communications 29 (2021) 102945. DOI: https://doi.org/10.1016/j.mtcomm.2021.102945
- [20] H. Siedel, K. Neumeister, R.J.G. Sobott, Laser cleaning as a part of the restoration process: removal of aged oil paints from a Renaissance sandstone portal in Dresden, Germany, Journal of Cultural Heritage 4/S1 (2003) 11-16. DOI: https://doi.org/10.1016/S1296-2074(02)01144-5
- [21] L. Lazov, A. Sniķeris, On the possibility of laser stripping of communication cables with low-power CO2 laser, Proceedings of the International Scientific and Practical Conference “Achievements in Environment. Technologies. Resources”, Rezekne–Letônia, vol. 3, 2021, 181-186. DOI: https://doi.org/10.17770/etr2021vol3.6615
- [22] K.L. Mittal, Particles on Surfaces: Detection, Adhesion and Removal, First edition, CRC Press, London, 2002.
- [23] M.S.F. Lima, J.-D. Wagnière, S.P. Morato, N.D. Vieira Jr., Elimination of Lubricants from Aluminum Cold Rolled Products using Short Laser Pulses, Materials Research 5/2 (2002) 205-208. DOI: https://doi.org/10.1590/S1516-14392002000200019
- [24] International Atomic Energy Agency, State of the Art Technology for Decontamination and Dismantling of Nuclear Facilities, First Edition, International Atomic Energy Agency, Vienna, Austria, 1999.
- [25] J. Ding, T. Zhang, H. Li, Recent advances in laser-induced breakdown spectroscopy for explosive analysis, TrAC Trends in Analytical Chemistry 166 (2023) 117197. DOI: https://doi.org/10.1016/j.trac.2023.117197
- [26] C.A. Brebbia, A.A. Mommoll, Computational methods in materials characterisation, First Edition, WIT Press, Southampton – Boston, 2004.
- [27] D. Neves, A.E. Diniz, M.S.F. Lima, Efficiency of the laser texturing on the adhesion of the coated twist drills, Journal of Materials Processing Technology 179/1-3 (2006) 139-145. DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.068
- [28] A.E. Diniz, M.S.F. Lima, J.M.A. Osorio, WC-Co coated carbide substrate surface texturing with a pulsed CuHBr laser, Proceedings of the 19th International Congress of Mechanical Engineering “ABCM 2007”, Brasília, 2007, 1-8.
- [29] G.L.X. Ribeiro, R.S. Castro, R.G. Santos, A.F.S. Bugarin, M. Terada, G.F. Batalha, Characterization of Ti6Al4V Alloy Produced by Laser-Powder Bed Fusion and Surface Modification Using Nanosecond Laser, Materials Research 26/S1 (2023) e20220544. DOI: https://doi.org/10.1590/1980-5373-MR-2022-0544
- [30] G.F. Batalha, M Stipkovic Filho, Quantitative characterization of the surface topography of cold rolled sheets - new approaches and possibilities, Journal of Materials Processing Technology 113/1-3 (2001) 732-738. DOI: https://doi.org/10.1016/S0924-0136(01)00607-0
- [31] S. Mannava, A.E. McDaniel, W.D. Cowie, H. Halila, J.E. Rhoda, J.E. Gutknecht, Laser shock peened gas turbine engine fan blade edges, US Patent 5,591,009, 09 September 1997. Available from: https://data.epo.org/gpi/EP0794264A1 (access in: 23.10.2024)
- [32] C.A.R.P. Baptista, M.S.F. Lima, R. Riva, R.H.M. Siqueira, Fatigue crack growth behavior of laser-shock processed aluminum alloy 2024-T3, Procedia Structural Integrity 17 (2019) 324-330. DOI: https://doi.org/10.1016/j.prostr.2019.08.043
- [33] D. von der Linde, K. Sokolowski-Tinten, The physical mechanisms of short-pulse laser ablation, Applied Surface Science 154-155 (2000) 1-10. DOI: https://doi.org/10.1016/S0169-4332(99)00440-7
- [34] N.N. Nedialkov, P.A. Atanasov, S. Amoruso, R. Bruzzese, X. Wang, Laser ablation of metals by femtosecond pulses: Theoretical and experimental study, Applied Surface Science 253/19 (2007) 7761-7766. DOI: https://doi.org/10.1016/j.apsusc.2007.02.083
- [35] T.A. Labutin, V.N. Lednev, A.A. Ilyin, A.M. Popov, Femtosecond laser-induced breakdown spectroscopy, Journal of Analytical Atomic Spectrometry 31 (2016) 90-118. DOI: https://doi.org/10.1039/C5JA00301F
- [36] M.S.F. Lima, R. Riva, R. Alves, S. Guimaraes, Lead-free laser soldering of an avionic component, Proceedings of the 4 th International WLT-Conference Lasers in Manufacturing “LIM 2007”, Munich, Germany, 2007, 121-124.
- [37] M.S.F. Lima, W. Kurz, W.A. Heinemann, Laser welding of X2CrNi12 steel, Proceedings of the 6th World Duplex Conference, Venezia, Italy, 2000.
- [38] R. Klein, Laser welding of plastics: materials. Processes and industrial applications, First Edition, John Wiley & Sons, Weinheim, 2012. DOI: https://doi.org/10.1002/9783527636969
- [39] R.H.M. de Siqueira, R. Riva, D.H. da Silva Costa, V. de Oliveira Gonçalves, M.S.F. de Lima, A crack propagation study on T-joints of AA6013-T4 aluminum alloy welded by an Yb:fiber laser, The International Journal of Advanced Manufacturing Technology 92 (2017) 2831-2841. DOI: https://doi.org/10.1007/s00170-017-0377-z
- [40] W. Kurz, J.-D. Wagniere, M. Rappaz, M.F. de Lima, Process for avoiding cracking in welding, Patent US20050028897A1. Available from: https://infoscience.epfl.ch/handle/20.500.14299/118298 (access in: 23.10.2024).
- [41] L. Abbaschian, M.S.F. Lima, Cracking susceptibility of aluminum alloys during laser welding, Materials Research 6/2 (2003) 273-278. DOI: https://doi.org/10.1590/S1516-14392003000200024
- [42] K.N. Kumar, R. Vijayanandh, G.R. Kumar, B. Sanjeev, H. Balachander, S.G. Prasad, Comparative Approaches for Fatigue Life Estimation of Aluminium Alloy for Aerospace Applications, International Journal of Vehicle Structures and Systems 10/4 (2018) 282-286. DOI: https://doi.org/10.4273/ijvss.10.4.11
- [43] C.H. Jung, H.B. Lee, I.S. Chang, T.Y. Kwon, Laser welding application for side panel in car body manufacturing, Proceedings of the 21st International Congress on Applications of Lasers and Electro-Optics “ICALEO 2002”, Sottsdale, USA, 2002, 65717. DOI: https://doi.org/10.2351/1.5066176
- [44] G.C.C. Correard, G.P. Miranda, M.S.F. Lima, Development of laser beam welding of advanced high-strength steels, The International Journal of Advanced Manufacturing Technology 83 (2016) 1967-1977. DOI: https://doi.org/10.1007/s00170-015-7701-2
- [45] A.T. Harada, E.G.S. Zanni, L.S. Aota, K.D. Zilnyk, M.S.F. Lima, A.J. Abdalla, Mechanical Properties of Laser Beam Welded Dissimilar High Strength Steels: 300M and DP 780, Materials Research 26/S1 (2023) e20230089. DOI: https://doi.org/10.1590/1980-5373-MR-2023-0089
- [46] K.M. Hong, Y.C. Shin, Prospects of laser welding technology in the automotive industry: A review, Journal of Materials Processing Technology 245 (2017) 46-69. DOI: https://doi.org/10.1016/j.jmatprotec.2017.02.008
- [47] A. Ribolla, G.L. Damoulis, G.F. Batalha, The use of Nd:YAG laser weld for large scale volume assembly of automotive body in white, Journal Materials Processing Technology 164-165 (2005) 1120-1127. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.104
- [48] H.A. Kavamura, G.F. Batalha, Mechanical strength evaluation for Nd-YAG laser and electric resistance spot weld (ERSW) joint under multiaxial loading, Journal of Materials Processing Technology 201/1-3 (2008) 507-514. DOI: https://doi.org/10.1016/j.jmatprotec.2007.11.172
- [49] G. Verhaeghe, P. Hilton, S. Barnes, Laser welding aluminum, Aerospace Engineering 23/9 (2003) 21-24.
- [50] J. Schumacher, I. Zerner, G. Neye, K. Thormann, Laser beam welding of aircraft fuselage panels, Proceedings of the 21st International Congress on Applications of Lasers and Electro-Optics “ICALEO 2002”, Sottsdale, USA, 2002, 169323. DOI: https://doi.org/10.2351/1.5066201
- [51] I.A. Almeida, W. de Rossi, M.S.F. Lima, J.R. Berretta, G.E.C. Nogueira, N.U. Wetter, N.D. Vieira Jr., Optimization of titanium cutting by factorial analysis of the pulsed Nd:YAG laser parameters, Journal of Materials Processing Technology 179/1-3 (2006) 105-110. DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.107
- [52] W.M. Steen, Laser material processing—an overview, Journal of Optics A: Pure and Applied Optics 5 (2003) S3. DOI: https://doi.org/10.1088/1464-4258/5/4/351
- [53] J.F. Ready, LIA Handbook of Laser Materials Processing, First edition, Laser Institute of America, Orlando, 2001.
- [54] W.M. Steen, Laser Materials Processing, Second Edition, Springer, London, 1998.
- [55] I. Abdelhalim, O. Hamdy, A.A. Hassan, S. Abdelkawi, S.H. Elnaby, A modified model for laser-cornea interaction following the ablation effect in the laser eye-surgery, Beni-Suef University Journal of Basic and Applied Sciences 12 (2023) 101. DOI: https://doi.org/10.1186/s43088-023-00426-0
- [56] K. Jiang, P. Zhang, S. Song, T. Sun, Y. Chen, H. Shi, H. Yan, Q. Lu, G. Chen, A review of ultra-short pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN, Materials Science in Semiconductor Processing 180 (2024) 108559. DOI: https://doi.org/10.1016/j.mssp.2024.108559
- [57] Z. Cui, Nanofabrication: Principles, Capabilities and Limits, First edition, Springer, New York, 2010. DOI: https://doi.org/10.1007/978-0-387-75577-9
- [58] R. Stoian, J.P. Colombier, Advances in ultrafast laser structuring of materials at the nanoscale, Nanophotonics 9/16 (2020) 4665-4688. DOI: https://doi.org/10.1515/nanoph-2020-0310
- [59] A.M. Orville, Recent results in time resolved serial femtosecond crystallography at XFELs, Current Opinion in Structural Biology 65 (2020) 193-208. DOI: https://doi.org/10.1016/j.sbi.2020.08.011
- [60] E.A. Zwanenburg, M.A. Williams, J.M. Warnett, Review of high-speed imaging with lab-based X-ray computed tomography, Measurement Science and Technology 33 (2021) 012003. DOI: https://doi.org/10.1088/1361-6501/ac354a
- [61] P. Lakkala, S.R. Munnangi, S. Bandari, M. Repka, Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review, International Journal of Pharmaceutics: X 5 (2023) 100159. DOI: https://doi.org/10.1016/j.ijpx.2023.100159
- [62] R. Nandhakumar, K. Venkatesan, A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness, Materials Today Communications 35 (2023) 105538. DOI: https://doi.org/10.1016/j.mtcomm.2023.105538
- [63] C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Progress and perspectives in laser additive manufacturing of key aeroengine materials, International Journal of Machine Tools and Manufacture 170 (2021) 103804. DOI: https://doi.org/10.1016/j.ijmachtools.2021.103804
- [64] M. Santos, G.F. Batalha, A. Farias, Influence of L-PBF additive manufacturing parameters on the residual stresses and thermal distortions in AISI 316L stainless steel parts, Archives of Materials Science and Engineering 127/1 (2024) 12-22. DOI: https://doi.org/10.5604/01.3001.0054.7283
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71710ca8-3a70-429f-8da6-2add624b1c21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.