PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the effect of chest orientation on pulmonary pressure under free field shock waves: a numerical analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. Methods: A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated. The correspondence between lung pressure at various angles, chest wall motion velocity and lung stress, and differences in pressure/stress of lung tissue behind ribs and intercostal muscle were analyzed. Results: The dynamic response of the chest can be roughly divided into four processes. High local intrapulmonary pressure areas were primarily in the anterior lobe margin and the lung’s central region. A 500 kPa incident wave at 0° could cause slight lung injury, whereas at 240°, the pressure was non-harmful. Lung tissue pressure and stress induced by chest wall movement were significantly higher behind the intercostal muscles than behind the ribs, with a difference of about 2–3 times. Conclusions: This layered model provides a cost-effective tool for large-scale shock wave impact simulations on the chest. Chest wall movement velocity strongly correlates with lung stress distribution. The significant density and sound velocity differences among ribs, intercostal muscles and lungs cause an acoustic impedance mismatch, leading to “striped bleeding” marks in post-impact lungs. This research enhances understanding of chest and lung injury mechanisms and informs the development of protective measures.
Rocznik
Strony
45--58
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • College of Science, National University of Defense Technology, Hunan, China
  • Daping Hospital, Army Medical Center, Chongqing, China
  • Daping Hospital, Army Medical Center, Chongqing, China
autor
  • Daping Hospital, Army Medical Center, Chongqing, China
autor
  • Daping Hospital, Army Medical Center, Chongqing, China
autor
  • Daping Hospital, Army Medical Center, Chongqing, China
autor
  • Daping Hospital, Army Medical Center, Chongqing, China
autor
  • College of Science, National University of Defense Technology, Hunan, China
autor
  • Daping Hospital, Army Medical Center, Chongqing, China
autor
  • Daping Hospital, Army Medical Center, Chongqing, China
Bibliografia
  • [1] ANDRIKAKOU P., VICKRAMAN K., ARORA H., On the behawior of lung tissue under tension and compression, Sci. Rep., 2016, 6, 36642.
  • [2] AXELSSON H., YELVERTON J.T., Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment, J. Trauma, 1996, 40 (3 Suppl), S31–37.
  • [3] BAO Z.Y., Study on dynamic mechanical properties of biological soft tissue, Dissertation, Nanjing University of Science and Technology, 2019.
  • [4] BASS C.R., RAFAELS K.A., SALZAR R.S., Pulmonary Injury Risk Assessment for Short-Duration Blasts, J. Trauma, 2008, 65 (3), 604–615.
  • [5] BHANA R.H., MAGAN A.B., Lung Mechanics: A Review of Solid Mechanical Elasticity in Lung Parenchyma, J. Elast., 2023, 153 (1), 53–117.
  • [6] BOWEN I.G., FLETCHER E.R., RICHMOND D.R., Estimate of man’s tolerance to the direct effects of air blast, Dissertation, Lovelace Foundation for Medical Education and Research, 1968.
  • [7] CARMO G.P., DYMEK M., PTAK M., ALVES_DE_SOUSA R.J., FERNANDES F.A.O., Development, Validation and a Case Study: The Female Finite Element Head(FeFEHM), Comput. Methods Programs Biomed., 2023, 231, 107430, DOI: 10.1016/j.cmpb.2023.107430.
  • [8] CLAYTON J.D., Modeling lung tissue dynamics and injury under pressure and impact loading, Biomech. Model Mechanobiol., 2020, 19 (6), 2603–2626.
  • [9] CLEMEDSON C., JÖNSSON A., Transmission and Reflection of High Explosive Shock Waves in Bone, Acta Physiol. Scand., 1961, 51, 47–61.
  • [10] COOPER G.J., TOWNEND D.J., CATER S.R., PEARCE B.P., The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high- -density materials, J. Biomech., 1991, 24 (5), 273–285.
  • [11] FUNG Y.C., YEN R.T., TAO Z.L., LIU S.Q., A hypothesis on the mechanism of trauma of lung tissue subjected to impact load, J. Biomech. Eng., 1988, 110 (1), 50–56.
  • [12] GREER A.D., Numerical Modeling for the Prediction of Primary Blast Injury to the Lung, Dissertation, The University of Waterloo, 2007.
  • [13] GRIMAL Q., NAILI S., WATZKY A., A study of impact wave propagation in the thorax, Mech. Res. Commun., 2002, 29 (2), 73–80.
  • [14] GRIMAL Q., WATZKY A., NAILI S., A one-dimensional model for the propagation of transient pressure waves through the lung, J. Biomech., 2002, 35 (8), 1081–1089.
  • [15] HSU Y., HO K., CHAN P., Anthropomorphic Blast Test Device for Primary Blast Injury Risk Assessment, Mil. Med., 2020, 185 (Suppl. 1), 227–233.
  • [16] HUANG J.D., YANG Z.H., WANG Z.G., Morphological changes of the lungs after blast, shell-fragment, and blast58 Z. FAN et al. fragment combined injuries in dogs, Journal of Army Medical University, 1992, 14 (2), 155–158.
  • [17] JIANG J.X., ZENG L., Advance of protection and mechanism of lung blast injury, Journal of Army Medical University, 2022, 44 (5), 395–398.
  • [18] JOSEY T., Investigation of Blast Load Characteristics on Lung Injury, Dissertation, The University of Waterloo, 2010.
  • [19] KANG J.Y., WANG J.M., YU Y., M., LI B.C., CHEN J., LIU H., Biological Effect and Numerical Simulation Study of Complex Blast Wave, Journal of Army Medical University, 2011, 33 (2), 173–176.
  • [20] LAUV. K., VIANO D.C., Influence of impact velocity and chest compression on experimental pulmonary injury severity in rabbits, J. Trauma, 1981, 21 (12), 1022–1028.
  • [21] LEWIS B.T., HERR K.D., HAMLIN S.A., HENRY T., LITTLE B.P., NAEGER D.M., HANNA T.N., Imaging Manifestations of Chest Trauma, Radiographics, 2021, 41 (5), 1321–1334.
  • [22] LI X., CHEN L., ZHANG Q.M., ZHANG A.F., MA G., Research on shock compression test of pigs lower limb, China Measurement and Test, 2016, 42 (10), 63–67.
  • [23] MACFADDEN L., CHAN P., HO K., STUHMILLER J., A model for predicting primary blast lung injury, J. Trauma Acute Care Surg., 2012, 73 (5), 1121–1129.
  • [24] MARRO A., CHAN V., HASS B., DITKOFSKY N., Blunt chest trauma: classification and management, Emerg. Radiol., 2019, 26 (5), 557–566.
  • [25] MAYORGA M.A., The pathology of primary blast overpressure injury, Toxicology, 1997, 121 (1), 17–28.
  • [26] NIE J., LV X., HUANG X., LI K., LI G., Pedestrian dynamic response and injury risk in high speed vehicle crashes, Acta Bioeng. Biomech., 2022, 24 (3), 56–57.
  • [27] RICE D., Sound speed in pulmonary parenchyma, J. Appl. Physiol., 1983, 54 (1), 304–308.
  • [28] ROBERTS S.B., CHEN P.H., Electrostatic analysis of the human thoracic skeleton, J. Biomech., 1970, 3 (6), 527–545.
  • [29] SCOTT T.E, KIRKMAN E., HAQUE M., GIBB I.E., MAHONEY P., HARDMAN J.G., Primary blast lung injury – a review, Br. J. Anaesth., 2017, 118 (3), 311–316.
  • [30] SHEN J., ROTH S., Effect of geometrical and mechanical parameters of ribs submitted to high velocity impact. A numerical investigation, Mechanics of Advanced Materials Structures, 2022, 29 (25), 4096–4109.
  • [31] STOTTMEISTER A., VON RAMIN M., SCHNEIDER J.M., On models of blast overpressure effects to the thorax, SN Appl. Sci., 2020, 2 (12), 2076.
  • [32] STUHMILLER J.H., HO K.H., VAN DER VORST M.J., DODD K.T., FITZPATRICK T., MAYORGA M., A model of blast overpressure injury to the lung, J. Biomech., 1996, 29 (2), 227–234.
  • [33] TAN X.G., PRZEKWAS A.J., GUPTA R.K., Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury, Shock Waves, 2017, 27, 889–904.
  • [34] TANG F., Research on Human Torso Injury and Protection under Blast wave and Fragment, Dissertation, Beijing Institute of Technology, 2019.
  • [35] THOM C.G., Soft Materials under Air Blast Loading and Their Effect on Primary Blast Injury, Dissertation, The University of Waterloo, 2009.
  • [36] WAGNER R.B., JAMIESON P.M., Pulmonary contusion. Evaluation and classification by computed tomography, Surg. Clin. North. Am., 1989, 69 (1), 31–40
  • [37] WANG B., HE Y.Y., NIE B.B., XU S.C., ZHANG J.H., Abdominal injury of vehicle occupant in underbody blast events, Journal of Jilin University, 2021, 51 (3), 792–798.
  • [38] WANG B., YANG J.B., YAO L.G., HE Y.Y., LYU H.Y., TANG J.S., XU S.C., ZHANG J.H., Blast injuries to human lung induced by blast shock waves, Explosion and Shockwaves, 2022, 42 (12), 13–21.
  • [39] WATTS S., KIRKMAN E., BIELER D., BJARNASON S., FRANKE A., GUPTA R., LEGGIERI M.J. JR., ORRU H., OUELLET S., PHILIPPENS M., SARRON J.-C., SKRIUDALEN S., TELAND J.A., RISLING M., CERNAK I., Guidelines for using animal models in blast injury research, J. R. Army Med. Corps., 2019, 165 (1), 38–40.
  • [40] YEN R.T., FUNG. C., HO H.H., BUTTERMAN G., Speed of stress wave propagation in lung, J. Appl. Physiol., 1986, 61 (1), 701–705.
  • [41] ZHANG S.X., WANG P.A., LIU Z.J., Atlas of Chinese Visible Human (Male and Female), China Science Publishing and Media, Ltd., 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7164a68b-c4ff-4078-b475-d72b50d0715b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.