Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, an efficient method for the denoising of electrocardiogram (ECG) signals is presented. As it is well-known, the efficient translation-invariant (TI) denoising technique, first introduced by Coifman and Donoho, uses K pre-processing shift-rotation operations, K denoising operations similar to the standard Donoho’s thresholding algorithm, K post-processing inverse shift-rotation operations, and finally, the K new less noisy copies generated by the preceding steps are averaged to produce a final denoised signal. Thus and conversely to the previously mentioned TI algorithm, the suggested technique consists of the design of a low computational translation-invariant-like strategy that eliminates the K pre-processing shift-rotation and the K post-processing inverse shift-rotation operations and only keeps the K wavelet-based denoising operations where for each one we use a different mother wave among a set of K mother waves ψ1, ψ2, . . . , ψK . Consequently, each mother wave generates a new less noisy copy from the original noisy signal. Finally, the produced less noisy multiple copies are averaged to reach the final denoised signal. Through this strategy, we can avoid the use of multiple hardware sensors to generate multiple noisy copies to be averaged to restore the clean version of the signal. Consequently, the proposed approach can considerably reduce the cost of the acquisition system. Additionally, the several results produced from extensive simulations show that the proposed algorithm outperforms many translation-invariant-like methods and can be considered as one of the top-ranking recent algorithms to tackle the denoising problem.
Czasopismo
Rocznik
Tom
Strony
259--278
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wzory
Twórcy
autor
- University of Batna 2 - Batna, Algeria
- LGE laboratory of M’sila University, Algeria
autor
- University of Batna 2 - Batna, Algeria
- LGE laboratory of M’sila University, Algeria
autor
- University of Batna 2 - Batna, Algeria
- LAAAS laboratory of Batna 2 University, Algeria
Bibliografia
- [1] Chitra, R., & Priya, E. (2020, February). Digital filter implementation for removal of baseline wanders in ECG Signals. In International Conference on Automation, Signal Processing, Instrumentation and Control (pp. 2711-2718). Springer Nature, Singapore. https://doi.org/10.1007/978-981-15-8221-9_254
- [2] Yang, H., & Wei, Z. (2022). An effective morphological-stabled denoising method for ECG signals using wavelet-based techniques. International Journal of Biomedical Engineering and Technology, 39(3), 263-282. https://doi.org/10.1504/IJBET.2022.124187
- [3] Rajini, A., & Vamsi, M. (2021). ECG signal denoising using EMD with notch filter and morphology filter. International Research Journal of Engineering and Technology, 8(10), 887-891. https://www.irjet.net/archives/V8/i10/IRJET-V8I10138.pdf
- [4] Taouli, S. A. (2022). Mathematical morphology and the heart signals. A book chapter in Biosignal Processing. https://cdn.intechopen.com/pdfs/81412.pdf
- [5] Krithika, K., Akhila, M., & Martis, R. J. (September 2021). Deep Learning Based Atrial Fibrillation Detection Using Effective Denoising Methods and Dimensionality Reduction Techniques. In 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 01-07). IEEE. https://doi.org/10.1109/R10-HTC53172.2021.9641550
- [6] Philip, A. M., & Hemalatha, D. S. (2022). Identifying arrhythmias based on ECG classification using enhanced PCA and enhanced SVM methods. International Journal on Recent and Innovation Trends in Computing and Communication, 10(5), 01-12. https://doi.org/10.17762/ijritcc.v10i5.5542
- [7] Shah, S. M. A., & Shah, S. W. (2019). Denoisation of ECG signal using JADE ICA and fast ICA comparison. International Journal of Engineering Works, 6(5), 182-186. https://doi.org/10.34259/ijew.19.605182186
- [8] Hesar, H. D., & Mohebbi, M. (2020). An adaptive Kalman filter bank for ECG denoising. IEEE Journal of Biomedical and Health Informatics, 25(1), 13-21. https://doi.org/10.1109/JBHI.2020.2982935
- [9] Keshavamurthy, T. G., & Eshwarappa, M. N. (2019). ECG signal de-noising based on adaptive filters. International Journal of Innovative Technology and Exploring Engineering, 9(1), 5473-5483. http://doi.org/10.35940/ijitee.K1601.119119
- [10] Khiter, A., Adamou Mitiche, A. B., & Mitiche, L. (2020). Denoising electrocardiogram signal from electromyogram noise using adaptive filter combination. Revue d’Intelligence Artificielle, 34(1), 67-74. https://doi.org/10.18280/ria.340109
- [11] Al-Safi, A. (2021). ECG signal denoising using a novel approach of adaptive filters for real-time processing. International Journal of Electrical and Computer Engineering (IJECE), 11(2), 1243-1249. http://doi.org/10.11591/ijece.v11i2.pp1243-1249
- [12] Ghasemi, A., Shama, F., & Khosravi, F. (2022). A new method for ECG denoising using an amalgamation of adaptive and SG filters. Signal Processing and Renewable Energy, 6(2), 1-15. https://dorl.net/dor/20.1001.1.25887327.2022.6.2.1.9
- [13] Vargas, R. N., & Veiga, A. C. P. (2021). Empirical mode decomposition, Viterbi, and wavelets applied to electrocardiogram noise removal. Circuits, Systems, and Signal Processing, 40, 691-718. https://link.springer.com/article/10.1007/s00034-020-01489-5
- [14] Mohguen, W., & Bouguezel, S. (2021). Denoising the ECG signal using ensemble empirical mode decomposition. Engineering, Technology & Applied Science Research, 11(5), 7536-7541. https://doi.org/10.48084/etasr.4302
- [15] Zhang, D., Wang, S., Li, F., Tian, S., Wang, J., Ding, X., & Gong, R. (2020). An efficient ECG denoising method based on empirical mode decomposition, sample entropy, and improved threshold function. Wireless Communications and Mobile Computing, 1-11. https://doi.org/10.1155/2020/8811962
- [16] Malik, S. A., Parah, S. A., Aljuaid, H., & Malik, B. A. (2023). An iterative filtering-based ECG denoising using lifting wavelet transform technique. Electronics, 12(2), 387. https://doi.org/10.3390/electronics12020387
- [17] Talbi, M., & Bouhlel, M. S. (2022). A novel technique of noise cancellation based on stationary bionic wavelet transform and WATV: application for ECG denoising. The International Arab Journal of Information Technology, 19(3), 381-387. https://doi.org/10.34028/iajit/19/3/12
- [18] Manju, B. R., & Sneha, M. R. (2020). ECG denoising using Wiener filter and Kalman filter. Procedia Computer Science, 171, 273-281. https://doi.org/10.1016/j.procs.2020.04.029
- [19] Samann, F., & Schanze, T. (2019). An efficient ECG denoising method using discrete wavelet with Savitzky-Golay filter. Current Directions in Biomedical Engineering, 5(1), 385-387. http://dx.doi.org/10.1515/cdbme-2019-0097
- [20] Li, Y., Su, Z., Chen, K., Zhang, W., & Du, M. (2022). Application of an EMG interference filtering method to dynamic ECGs based on an adaptive wavelet-Wiener filter and adaptive moving average filter. Biomedical Signal Processing and Control, 72, 103344. https://doi.org/10.1016/j.bspc.2021.103344
- [21] Goel, S., Tomar, P., & Kaur, G. (2016). A fuzzy-based approach for denoising of ECG signal using wavelet transform. International Journal of Bio-Science and Bio-Technology, 8(2), 143-156. http://dx.doi.org/ 10.14257/ijbsbt.2016.8.2.13
- [22] Donoho, D. L., & Johnstone, I. M. (1994). Threshold selection for wavelet shrinkage of noisy data. Proceedings of 16th annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1, 24-25. https://doi.org/10.1109/IEMBS.1994.412133
- [23] Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613-627. https://doi.org/10.1109/18.382009
- [24] Tikkanen, P. E. (1999). Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biological Cybernetics, 80(4), 259-267. https://doi.org/10.1007/s004220050523
- [25] Ercelebi, E. (2004). Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Computers in Biology and Medicine, 34(6), 479-493. https://doi.org/10.1016/S0010-4825(03)00090-8
- [26] Boutaa, M., Bereksi-Reguig, F., & Debbal, S. M. A. (2008). ECG signal processing using multiresolution analysis. Journal of Medical Engineering & Technology, 32(6), 466-478. https://doi.org/10.1080/03091900701249463
- [27] Awal, M. A., Mostafa, S. S., Ahmad, M., & Rashid, M. A. (2014). An adaptive level-dependent wavelet thresholding for ECG denoising. Biocybernetics and Biomedical Engineering, 34(4), 238-249. https://doi.org/10.1016/j.bbe.2014.03.002
- [28] Ahmad, A. S. S., Matti, M. S., ALhabib, O. A., & Shaikhow, S. (2018). Denoising of arrhythmia ECG signals. International Journal of Medical Research & Health Sciences, 7(3), 83-93. https://www.ijmrhs.com/medical-research/denoising-of-arrhythmia-ecg-signals.pdf
- [29] Yang, Y., & Wei, Y. (2010). Random interpolation average for signal denoising. IET Signal Processing, 4(6), 708-719. https://doi.org/10.1049/iet-spr.2009.0213
- [30] Ur Rehman, N., Abbas, S. Z., Asif, A., Javed, A., Naveed, K., & Mandic, D. P. (2017). Translation-invariant multi-scale signal denoising based on goodness-of-fit tests. Signal Processing, 131, 220-234. https://doi.org/10.1016/j.sigpro.2016.08.019
- [31] Naveed, K., Shaukat, B., & ur Rehman, N. (2018). Dual tree complex wavelet transform-based signal denoising method exploiting neighbourhood dependencies and goodness-of-fit test. Royal Society Open Science, 5(9), 180436. https://doi.org/10.1098/rsos.180436
- [32] Talbi, M. (2020). New approach of ECG denoising based on 1-D double-density complex DWT and SBWT. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8(6), 608-620. https://doi.org/10.1080/21681163.2020.1763203
- [33] Zhang, D., Wang, S., Li, F., Wang, J., Sangaiah, A. K., Sheng, V. S., & Ding, X. (2019). An ECG signal de-noising approach based on wavelet energy and sub-band smoothing filter. Applied Sciences, 9(22), 4968. https://doi.org/10.3390/app9224968
- [34] Liu, R., Shu, M., & Chen, C. (2021). ECG signal denoising and reconstruction based on basis pursuit. Applied Sciences, 11(4), 1591. https://doi.org/10.3390/app11041591
- [35] Coifman, R. R., & Donoho, D. L. (1995). Translation-invariant denoising. In A. Antoniadis, G. Oppenheim (Eds.), Wavelets and Statistics. Lecture Notes in Statistics (pp. 125-150). Springer-Verlag. https://doi.org/10.1007/978-1-4612-2544-7_9
- [36] Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693. https://doi.org/10.1109/34.192463
- [37] Bloch, I. (Ed.). (2010). Information fusion in signal and image processing: major probabilistic and non-probabilistic numerical approaches. John Wiley & Sons. https://doi.org/10.1002/9780470611074
- [38] Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45-50. https://www.physionet.org/physiobank/database/mitdb/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71632ba1-e4e1-4fe0-b162-2923e06fc7f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.