PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil Salinity Monitoring and Quantification Using Modern Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Along with sea-level rise, one of the most detrimental effects of climate change, is salinity leakage, which significantly affects agricultural activities throughout most of the world. This occurrence is becoming increasingly dangerous. The purpose of this study was to use Geographical Information Systems (GIS) to assess the current situation of agricultural lands in the province of Al-Diwaniyah, by employing GIS to document the salt-affected sites and arrive at the most important criteria affecting those lands as well as build an application model for suitability to clarify the affected sites and come up with paper and digital maps. To accomplish this, the study relied on the available data by extrapolating and analyzing remote sensing images using salt equations to analyze the Landsat 8 satellite images, after which these data were subjected to spatial statistical treatment in ArcGIS software. Moreover, 20 samples were taken from ground sampling points and subjected to laboratory analysis to compare and document the results. The research resulted in the creation of an up-to-date database for the locations of salt ratio growth or decrease in the province of Al-Diwaniyah, which can be relied on, starting from and expanding in the future. Land maps, both paper and digital, have been created and can be used and inferred. The findings demonstrated the model’s ability to steadily discriminate among all salinity groups while maintaining consistency with the ground truth data. Each of the four major salinity categories was highlighted. The best-performing indicators were used to build the MLR model, which was then used to anticipate soil salinity. The salt levels may be determined by the MLR combining NDVI and SI-5 with a high correlation value (R2 = 75.29%). Finally, it is shown that by combining spectral indicators with field measurements, it is possible to chart and forecast soil salinity on a large scale.
Słowa kluczowe
Rocznik
Strony
57--67
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Civil Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
  • Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
  • Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Abbas, A., Khan, S. 2007. Using remote sensing techniques for appraisal of irrigated soil salinity, in: MODSIM07 - Land, Water and Environmental Management: Integrated Systems for Sustainability, Proceedings, 2632–2638.
  • 2. Akramkhanov, A., Vlek, P.L.G. 2012. The assessment of spatial distribution of soil salinity risk using neural network. Environ. Monit. Assess., 184. https://doi.org/10.1007/s10661-011-2132-5
  • 3. Bannari, A., Guedon, A.M., El-Harti, A., Cherkaoui, F.Z., El-Ghmari, A. 2008. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal., 39, 2795–2811. https://doi.org/10.1080/00103620802432717
  • 4. Ben-Dor, E., Goldshleger, N., Mor, E., Mirlas, V., Basson, U. 2008. Combined Active and Passive Remote Sensing Methods for Assessing Soil Salinity, in: Remote Sensing of Soil Salinization. https://doi.org/10.1201/9781420065039.ch12
  • 5. Bouaziz, M., Matschullat, J., Gloaguen, R. 2011. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus - Geosci., 343, 795–803. https://doi.org/10.1016/j.crte.2011.09.003
  • 6. Discovering statistics using R. 2012. Choice Rev. Online 50, 50-2114-50–2114. https://doi.org/10.5860/choice.50-2114
  • 7. Douaik, A., van Meirvenne, M., Tóth, T., Serre, M. 2004. Space-time mapping of soil salinity using probabilistic bayesian maximum entropy. Stoch. Environ. Res. Risk Assess., 18, 219–227. https://doi.org/10.1007/s00477-004-0177-5
  • 8. Eldeiry, A.A., Garcia, L.A. 2008. Detecting Soil Salinity in Alfalfa Fields using Spatial Modeling and Remote Sensing. Soil Sci. Soc. Am. J. 72, 201–211. https://doi.org/10.2136/sssaj2007.0013
  • 9. Fallah Shamsi, S.R., Zare, S., Abtahi, S.A. 2013. Soil salinity characteristics using moderate resolution imaging spectroradiometer (MODIS) images and statistical analysis. Arch. Agron. Soil Sci. 59. https://doi.org/10.1080/03650340.2011.646996
  • 10. Goldshleger, N., Chudnovsky, A., Ben-Binyamin, R. 2013. Predicting salinity in tomato using soil reflectance spectra. Int. J. Remote Sens., 34, 6079–6093. https://doi.org/10.1080/01431161.2013.793859
  • 11. Hihi, S., Rabah, Z.B., Bouaziz, M., Chtourou, M.Y., Bouaziz, S. 2019. Prediction of Soil Salinity Using Remote Sensing Tools and Linear Regression Model. Adv. Remote Sens., 8, 77–88. https://doi.org/10.4236/ars.2019.83005
  • 12. Jiang, H., Rusuli, Y., Amuti, T., He, Q. 2019. Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network. Int. J. Remote Sens., 40, 284–306. https://doi.org/10.1080/01431161.2018.1513180
  • 13. Jordán, M.M., Navarro-Pedreño, J., García-Sánchez, E., Mateu, J., Juan, P. 2004. Spatial dynamics of soil salinity under arid and semi-arid conditions: Geological and environmental implications. Environ. Geol., 45, 448–456. https://doi.org/10.1007/s00254-003-0894-y
  • 14. Lesch, S.M., Strauss, D.J., Rhoades, J.D. 1995. Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 1. Statistical Prediction Models: A Comparison of Multiple Linear Regression and Cokriging. Water Resour. Res., 31, 373–386. https://doi.org/10.1029/94WR02179
  • 15. Liang, J., Ding, J., Wang, J., Wang, F. 2019. Quantitative estimation and mapping of soil salinity in the Ebinur Lake wetland based on VIS-NIR reflectance and Landsat 8 OLI data. Acta Pedol. Sin., 56. https://doi.org/10.11766/trxb201805070182
  • 16. Malins, D., Metternicht, G. 2006. Assessing the spatial extent of dryland salinity through fuzzy modeling. Ecol. Modell., 193, 387–411. https://doi.org/10.1016/j.ecolmodel.2005.08.044
  • 17. Minasny, B., McBratney, A.B. 2016. Digital soil mapping: A brief history and some lessons. Geoderma, 264, 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017
  • 18. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE, 50, 885–900. https://doi.org/10.13031/2013.23153
  • 19. Peng, J., Biswas, A., Jiang, Q., Zhao, R., Hu, J., Hu, B., Shi, Z. 2019. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 337, 1309–1319. https://doi.org/10.1016/j.geoderma.2018.08.006
  • 20. Qu, Y., Jiao, S., Lin, X. 2008. A partial least square regression method to quantitatively retrieve soil salinity using hyper-spectral reflectance data, in: Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, 71471H. https://doi.org/10.1117/12.813254
  • 21. Salinity: Environment - Plants - Molecules, 2004., Salinity: Environment - Plants - Molecules. Dordrecht, The Netherlands. https://doi.org/10.1007/0-306-48155-3
  • 22. Shrestha, R.P. 2006. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. L. Degrad. Dev., 17, 677–689. https://doi.org/10.1002/ldr.752
  • 23. Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., Malone, B.P. 2014. Digital mapping of soil salinity in ardakan region, central iran. Geoderma, 213, 15–28. https://doi.org/10.1016/j.geoderma.2013.07.020
  • 24. Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., Ge, X., Zhang, Z., Wang, Y., Yang, X., Shi, T., Su, F. 2020. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ., 707. https://doi.org/10.1016/j.scitotenv.2019.136092
  • 25. Wang, N., Xue, J., Peng, J., Biswas, A., He, Y., Shi, Z. 2020. Integrating remote sensing and landscape characteristics to estimate soil salinity using machine learning methods: A case study from southern xinjiang, china. Remote Sens., 12, 1–21. https://doi.org/10.3390/rs12244118
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7160ffb5-585a-431f-ab67-f155d60a7ad3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.