PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of the PMMA bone cement distribution inside a model of lumbar vertebrae

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of bone cement in procedures such as vertebroplasty and kyphoplasty can reduce pain and mechanically support the spine. This study aimed to evaluate whether air entrapped within bone cement affected its distribution in a vertebral body model. The study included 3D printed anatomical models of vertebrae together with their internal trabecular structure. Aeration was achieved by mixing the bone cement using three different altered procedures, whilst the control sample was prepared according to the manufacturer’s instructions. The further two samples were prepared by reducing or increasing the number of cycles required to mix the bone cement. A test rig was used to administer the prepared bone cement and introduce it into the vertebral model. Each time the injection was stopped when either the cement started to flow out of the vertebral model or when the entire cement volume was administered. The computer tomography (CT) scanning was performed to evaluate aerification and its influence on the bone cement distribution in each of the patient-specific models. The large number of small pores visible within the cement, especially in the cannula vicinity, indicated that the cement should not be treated as a homogenous liquid. These results suggest that a high level of aerification can influence the further cement distribution.
Rocznik
Strony
23--30
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
  • LfC Ltd. Medical, 41 Kożuchowska St., 65-364 Zielona Góra, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Turbomachinery, Wólczańska 219/223 St., 90-924 Łódź, Poland
  • LfC Ltd. Medical, 41 Kożuchowska St., 65-364 Zielona Góra, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Turbomachinery, Wólczańska 219/223 St., 90-924 Łódź, Poland
  • LfC Ltd. Medical, 41 Kożuchowska St., 65-364 Zielona Góra, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Turbomachinery, Wólczańska 219/223 St., 90-924 Łódź, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Turbomachinery, Wólczańska 219/223 St., 90-924 Łódź, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Turbomachinery, Wólczańska 219/223 St., 90-924 Łódź, Poland
  • Molecular and Nanostructural Biophysics Laboratory, BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • Molecular and Nanostructural Biophysics Laboratory, BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
  • LfC Ltd. Medical, 41 Kożuchowska St., 65-364 Zielona Góra, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Turbomachinery, Wólczańska 219/223 St., 90-924 Łódź, Poland
  • Molecular and Nanostructural Biophysics Laboratory, BioNanoPark Laboratories, 114/116 Dubois St., 93-465 Lodz, Poland
Bibliografia
  • [1] Conference report. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. The American Journal of Medicine 94 (1993) 646-650.
  • [2] Hsuan-You Chen, Yen-Po Lin, Han-YingWang, Feng-Huei Lin, Po-Quang Chen, Ding-cheng Chan, Tze-Hong Wong, Ming-Hsiao Hu: Safer way for vertebroplasty under fluid mechanics theory. The Spine Journal 20 (2020) S77-S135.
  • [3] Andrei D., Popa I., Brad S., Iancu A., Oprea M., Vasilian C., Poenaru D.V.: The variability of vertebral body volume and pain associated with osteoporotic vertebral fractures: conservative treatment versus percutaneous transpedicular vertebroplasty. International Orthopaedics 41 (2017) 963-968.
  • [4] Adams M.A., Dolan P.: Perspective: Spine biomechanics. Journal of Biomechanics 38 (2005) 1972-1983.
  • [5] Dengwei He, Chao Lou, Weiyang Yu, Kejun Zhu, Zhongwei Wu, Feijun Liu, Minjang Chen, Lin Zheng, Zhenzhoing Chen, Shunwu Fan: Cement distribution patterns are associated with recompression in cemented vertebrae after percutaneous vertebroplasty: a retrospective study. World Neurosurgery 120 (2018) e1-e7.
  • [6] Biancji E., Chiusa F., Pennati G.: Computational fluid dynamics of bone cement in procedures for osteoporosis treatment. 16th ESB Congress, Presentation, O154, S157.
  • [7] Huber G., Muller-Bergen L., Heinze J., Eggers C., Purschel K., Morlock M.M.: Mechanical stability of augmented spinal segments. 5th World Congress of Biomechanics, München (2006).
  • [8] Lin C-Y., Chuang S-Y., Ju D-T., Chen W-P.: Effects of bone stiffness, cement volumes and vertebral body height loss on the load transfer change of adjacent vertebrae in percutaneous vertebroplasty. Journal of Biomechanics 40 (2007) 584-585.
  • [9] Wang J-L., Chiang Ch-K., Kuo Y-W., Chou W-K., Yang B-D.: Mechanism of fractures of adjacent and augmented vertebral following simulated vertebroplasty. Journal of Biomechanics 45 (2012) 1372-1378.
  • [10] Jung Sik Bae, Heong Hyun Park, Ki Joon Kim, Hyeun Sung Kim, Il-Tae Jang: Analysis of risk factors for secondary new vertebral compression fracture following percutaneous vertebroplasty in patients with osteoporosis. World Neurosurgery 99 (2016) 387-394.
  • [11] Tschirhart C.E., Roth S.E., Whyne C.M.: Biomechanical assessment of stability in the metastatic spine following percutaneous vertebroplasty: effects of cement distribution patterns and volume. Journal of Biomechanics 38 (2005) 1582-1590.
  • [12] Tyfa Z., Witkowski D., Sobczak K., Obidowski D., Jóźwik K.: Experimental investigations of the aerated polymethylmethacrylate- -based vertebral cement flow in capillaries. The International Journal of Artificial Organs 41(10) (2018) 670-676.
  • [13] Race A., Mann K.A., Edin A.A.: Mechanics of bone/PMMA composite structures: An in vitro study of human vertebrae. Journal of Biomechanics 40 (2007) 1002-1010.
  • [14] Tarsuslugil S.M., O’Hara R.M., Dunne N.J., Buchanan F.J., Orr J.F., Barton D.C., Wilcox R.K.: Development of calciumphosphate. Journal of Biomechanics 46 (2013) 711-715.
  • [15] Kinzl E., Boger A., Zysset P.K., Pahr D.H.: The effects of bone and pore volume fraction on the mechanical properties of PMMA-bone biopsies extracted from augmented vertebrae. Journal of Biomechanics 44 (2011) 2732-2736.
  • [16] Baroud G., Falk R., Crookshank M., Sponagel S., Steffen T.: Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration. Journal of Biomechanics 37 (2004) 189-196.
  • [17] Boger A., Wheeler K., Montali A., Gruskin E.: NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. Journal of Biomedical Materials Research Part B: Applied Biomaterials 90(2) (2009) 760-766.
  • [18] Kwon S.Y., Cho E.H., Kim S.S.: Preparation and characterization of bone cements incorporated with montmorillonite. Journal of Biomedical Materials Research Part B: Applied Biomaterials 83(1) (2007) 276-284.
  • [19] Arabmotlagh M., Rickert M., Lukas A., Rauschmann M., Fleege Ch.: Small Cavity Creation in the vertebral body reduces the rate of cement leakage during vertebroplasty. Journal of orthopaedic research 35(1) (2017) 154-159.
  • [20] Orlando O.A.: Vertebroplasty Cement Augmentation Technique. In: Razi A., Hershman S. (eds) Vertebral Compression Fractures in Osteoporotic and Pathologic Bone. Springer, Cham (2020) 115-135.
  • [21] Furtos G., Tomoaia-Cotisel M., Baldea B., Prejmerean C.: Development and characterization of new AR glass fiber reinforced cements with potential medical applications. J Appl Polym Sci, 128(2) (2013) 1266-1273.
  • [22] Furtos G., Tomoaia-Cotisel M., Garbo C., Şenilă M., Jumate N., Vida-Simiti I., Prejmerean C.: New composite bone cement based on hydroxyapatite and nanosilver. Particul Sci Technol 31(4) (2013) 392-398.
  • [23] Barakat A.S., Alhashash M., Shousha M., Boehm H.: What an orthopaedic surgeon should know about vertebral cement augmentation. Current Orthopaedic Practice 28(4) (2017) 409-416.
  • [24] Slane J., Vivanco J., Rose W., Ploeg H.L., Squire M.: Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering: C48 (2015) 188-196.
  • [25] Farrar D.F., Rose J.: Rheological properties of PMMA bone cements during curing. Biomaterials 22(22) (2001) 3005-3013.
  • [26] Spierlings P.T.: Properties of bone cement: testing and performance of bone cements. The Well-Cemented Total Hip Arthroplasty: Theory and Practice. Heidelberg: Springer Medlizin Verlag Heidelberg (2005) 67-78.
  • [27] Hernández L., Gurruchaga M., Goñi I.: Influence of powder particle size distribution on complex viscosity and other properties of acrylic bone cement for vertebroplasty and kyphoplasty. Journal of Biomedical Materials Research, Part B: Applied Biomaterials 77(1) (2006) 98-103.
  • [28] Pietroń K., Mazurkiewicz Ł., Sybilski K., Małachowski J.: Correlation of Bone Material Model Using Voxel Mesh and Parametric Optimization. Materials 15(15) (2022) 5163.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-716078c0-6ca9-415c-ac36-ed32188beb9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.