Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, the problem of heating a cold hand squeezing a pipe through which hot water flows is considered. The mathematical model concerns a one-dimensional axisymmetric problem in cylindrical coordinates. The aim of the research is to estimate the probability of different degrees of burns depending on the temperature of the flowing hot water, the pipe material, and the heating time. This probability is estimated using the Arrhenius integral. The considered problem is solved numerically using the finite volume method. Numerical examples of simulations for various pipe materials are presented.
Rocznik
Tom
Strony
61--70
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Department of Mathematics, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
- [1] Özişik, M.N. (1993). Heat Condition. John Wiley & Sons.
- [2] Incropera, F.P., De Witt D.P., Bergman T.L., & Lavine A.S. (2007). Fundamentals of Heat and Mass Transfer. John Wiley & Sons.
- [3] Cengel, Y.A. (2002). Heat Transfer - A Practical Approach. McGraw-Hill.
- [4] Podlubny, I. (1999). Fractional Differential Equations. Academic Press.
- [5] Kukla, S., Siedlecka, U., & Ciesielski, M. (2022). Fractional order dual-phase-lag model of heat conduction in a composite spherical medium. Materials, 15(20), 7251.
- [6] Siedlecka, U. (2023). Modelling of the solar heating of a multi-layered spherical cone. Journal of Applied Mathematics and Computational Mechanics, 22(4), 53-63.
- [7] Farlow, S.J. (1993). Partial Differential Equations for Scientists and Engineers. Dover Publications.
- [8] Polyanin, A.D. (2001). Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall.
- [9] Jasiński, M. (2018). Modelling of thermal damage process in soft tissue subjected to laser irradiation. Journal of Applied Mathematics and Computational Mechanics, 17(2), 29-41.
- [10] Majchrzak, E., & Kałuża, G. (2022). Sensitivity analysis of temperature in heated soft tissues with respect to time delays. Continuum Mechanics and Thermodynamics, 34, 587-599.
- [11] Marin, M., Hobiny, A., & Abbas, I. (2021). Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources. Mathematics, 9(13), 1459.
- [12] Hatami, M., & Bayareh, M. (2019). Numerical simulation of heat transfer from three-dimensional model of human head in different environmental conditions. International Journal of Heat and Technology, 37(3), 803-810.
- [13] Ciesielski, M., Siedlecki, J., & Janik, M.K. (2020). Mathematical modelling of thermal and electrical processes during electrosurgical resection of colorectal polyps. International Journal of Engineering Science, 154, 103351.
- [14] Barth, T., Herbin, R., & Ohlberger, M. (2017). Finite Volume Methods: Foundation and Analysis. Encyclopedia of Computational Mechanics Second Edition, 1-60.
- [15] Reddy, J.N., Anand, N.K., & Roy, P. (2023). Finite Element and Finite Volume Methods for Heat Transfer and Fluid Dynamics. Cambridge University Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-715976ef-c8b1-4f33-9129-e25b3bd2ce69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.