PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A method of discretising the belt in a flat model of a belt transmission

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a method of discretising a belt used in a transmission model with any number of pulleys and tensioning rollers and any direction of wrapping the pulleys or rollers. The positions of the discretising points are formulated in a global coordinate system. The method allows for arbitrary placement of pulleys and tensioning rollers. It also consequently allows to calculate the length of the belt, resulting from the geometry of the transmission, and the length of the belt, resulting from the coordinates of the discretising points that lie on its circumference. The method presented here allows to estimate the number of points that would provide satisfactory accuracy of the belt’s curvature surrounding the individual pulleys and rollers. In the paper presented comparison between two proposed ways of estimating. Designated points can be used as input data to analyse the belt dynamics with the belt modelled as rigid elements connected to one another by translational or rotational spring-damping elements.
Rocznik
Strony
93--105
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • University of Bielsko-Biała, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics, ul. Willowa 2, 43-309 Bielsko-Biała
Bibliografia
  • [1] Alciatore D G, Traver A E. Multipulley belt drive mechanics: creep theory vs shear theory. Trans. of ASME. 1995; 117: 506-511.
  • [2] Čepon G, Boltežar M. Dynamics of a belt-drive system using a linear complementarity problem for the beltpulley contact description. Journal of Sound and Vibration. 2009; 319: 1019-1035.
  • [3] Chowdhury S, Yedavalli R K. Dynamics of belt-pulley-shaft systems. Mechanisms and Machine Theory. 2016; 98: 199-215.
  • [4] Dahl P R. A Solid Friction Model. Report No. TOR-0158(3107-18)-1, Aerospace Corporation Report. 1968.
  • [5] Eliseev V, Vetyukov Y. Effects of deformation in the dynamics of belt drive. Acta Mechanica. 2012; 223: 1657-1667.
  • [6] Julio G, Plante J-S. An experimentally-validated model of rubber-belt CVT mechanics. Mechanism and Machine Theory. 2011; 46: 1037-1053.
  • [7] Kim D, Leamy M J, Ferri A A. Dynamic Modeling and Stability Analysis of Flat Belt Drives Using an Elastic/ Perfectly Plastic Friction Law. ASME Journal of Dynamic Systems, Measurement, and Control. 2011; 133: 1-10.
  • [8] Leamy M J, Wasfy T M. Analysis of belt-drive mechanics using a creep-rate-dependent friction law. Journal of Applied Mechanics. Trans. of ASME. 2002; 69(6): 763-771.
  • [9] Leamy M J, Wasfy T M. Dynamic finite element modeling of belt drives. 18th Biennial Conference on Mechanical Vibration and Noise. ASME International 2001 DETC. 2001.
  • [10] Leamy M J, Wasfy T M. Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives. ASME Journal of Dynamic Systems, Measurement, and Control. 2002; 124(4): 575-581.
  • [11] Pan Y , Liu Y , Chen G. Complex modal analysis of serpentine belt drives based on beam coupling model. Mechanisms and Machine Theory. 2017; 116: 162-177.
  • [12] Rubin M B. An exact solution for steady motion of an extensible belt in multipulley belt drive systems. Journal of Mechanical Design. 2000; 122: 311-316.
  • [13] Voigt W. Überinnere Reibung fester Körper, insbesondere der Metalle. Annalen derPhysik. 1892; 283: 671–693.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7153a6b2-5643-40e0-ae87-ef21d7c8fb71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.