PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wideband planar microstrip antenna based on split ring resonator For 5G mobile applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Szerokopasmowa planarna antena mikropaskowa oparta na rezonatorze z dzielonym pierścieniem do zastosowań mobilnych 5G
Języki publikacji
EN
Abstrakty
EN
This paper presents a wideband planar microstrip antenna based on split ring resonator left-handed metamaterial (SRR-LHM) type at 3.5 GHz frequency for mid-band 5G mobile applications. The need to design a wideband antenna with good gain realising the proposed lower band spectrum for 5G technology is urgently demanded. To meet the requirements, microstrip technology and metamaterial are proposed. Firstly, the microstrip antenna is designed with a square patch and two longitude slots at 3.5 GHz. The metamaterial unit cell is designed individually based on the split ring resonator (left-handed metamaterial) SRR LHM type and then integrated with the developed antenna at the same band. The metamaterial is placed on the ground plane of the microstrip antenna. That will increase the bandwidth accordingly. The proposed metamaterial antenna is simulated and optimised using CST software. A good return loss of greater than 10 dB and impedance bandwidth of 1.04 GHz is obtained. This metamaterial antenna is a good candidate for mid-band 5G applications.
PL
W artykule przedstawiono szerokopasmową planarną antenę mikropaskową opartą na lewoskrętnym metamateriale z rezonatorem pierścieniowym (SRR-LHM) o częstotliwości 3,5 GHz do zastosowań mobilnych 5G w średnim paśmie. Pilnie potrzebna jest potrzeba zaprojektowania anteny szerokopasmowej z dobrym wzmocnieniem, realizującej proponowane dolne pasmo widma dla technologii 5G. Aby sprostać wymaganiom, proponuje się technologię mikropaskową i metamateriał. Po pierwsze, antena mikropaskowa została zaprojektowana z kwadratową łatą i dwoma szczelinami długości geograficznej o częstotliwości 3,5 GHz. Komórka elementarna metamateriału jest projektowana indywidualnie w oparciu o dzielony rezonator pierścieniowy (metamateriał lewoskrętny) typu SRR LHM, a następnie integrowana z opracowaną anteną w tym samym paśmie. Metamateriał umieszcza się na płaszczyźnie uziemienia anteny mikropaskowej. To odpowiednio zwiększy przepustowość. Proponowana antena metamateriałowa jest symulowana i optymalizowana za pomocą oprogramowania CST. Uzyskuje się dobrą tłumienność odbiciową większą niż 10 dB i szerokość pasma impedancji 1,04 GHz. Ta antena metamateriałowa jest dobrym kandydatem do zastosowań 5G w średnim paśmie.
Rocznik
Strony
190--194
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
  • Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
autor
  • Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
  • Ministry of Interior Affairs, Baghdad, Iraq
  • Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malaysia (UTeM)
  • Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
  • School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
Bibliografia
  • [1] A. Gohil, H. Modi, and S. K. Patel, "5G technology of mobile communication: A survey," in 2013 international conference on intelligent systems and signal processing (ISSP), 2013: IEEE, pp. 288-292.
  • [2] H. H. Keriee, M. K. A. Rahim, N. A. Nayyef, Z. Zakaria, and A. J. A. Al-Gburi, "High gain antenna at 915 MHz for off grid wireless networks," Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2449–2454, 2020.
  • [3] H. Keriee et al., "Millimeter-Wave Bandpass Filter By Open Loop Elliptical Ring Resonators," in 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), 2-3 Oct. 2019 2019, pp. 90-92.
  • [4] I. M. Ibrahim, A. J. A. Al-gburi, Z. Zakaria, and H. A. Bakar, "Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna," J. Telecommun. Electron. Comput. Eng., vol. 10, pp. 2–5, 2018.
  • [5] A. J. A. Al-gburi, I. M. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact Size and High Gain of CPW-fed UWB Strawberry Artistic shaped Printed Monopole Antennas using FSS Single Layer Reflector," IEEE Access, vol. 8, no. 5, pp. 92697–92707, 2020.
  • [6] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, "Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna," J. Comput. Theor. Nanosci., vol. 17, pp. 1469–1473, 2020.
  • [7] Al-gburi, A.J.A., Ibrahim, I.M., Abdulhameed, M.K., Zakaria, Z., Zeain, M.Y., Keriee, H.H., Nayyef, N.A., Alwareth, H. and Khaleel, AD, "A compact UWB FSS single layer with stopband properties for shielding applications," Przegląd Elektrotechniczny, no. 2, pp. 165–168, 2021.
  • [8] Kamaruddin, R.A.A., Ibrahim, I.B.M., Al-Gburi, A.J.A., Zakaria, Z., Shairi, N.A., Rahman, T.A. and Purnamirza, T., "Return Loss Improvement of Radial Line Slot Array Antennas on Closed Ring Resonator Structure at 28 GHz," Przegląd Elektrotechniczny, vol. 1, no. 5, pp. 65–69, 2021.
  • [9] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, "Band-notch effect of U-shaped split ring resonator structure at ultra wideband monopole antenna," Int. J. Appl. Eng. Res., vol. 12, no. 15, pp. 4782–4789, 2017.
  • [10] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, "An Ultra- Miniaturised MCPM Antenna for Ultra-Wideband Applications," J. Nano Electron. Phys., vol. 13, no. 5, 2021.
  • [11] M. K. Abdulhameed, M. S. Kod, and A. J. A. Al-gburi, "Enhancement of elevation angle for an array leaky-wave antenna," Prz. Elektrotechniczny, no. 8, pp. 109–113, 2021.
  • [12] A. J. A. Al-gburi, I. M. Ibrahim, K. S. Ahmad, Z. Zakaria, M. Y. Zeain, M. K. Abdulhameed, and T. Saeidi "A miniaturised UWB FSS with Stop-band Characteristics for EM Shielding Applications," Prz. Elektrotechniczny, no. 8, pp. 142–145, 2021.
  • [13] M. Y. Zeain, M. Abu, A. J. A. Al-gburi, Z. Zakaria, R. Syahputri, and A. Toding, "Design of a wideband strip helical antenna for 5G applications," Bull. Electr. Eng. Informatics, vol. 9, no. 5, pp. 1958–1963, 2020.
  • [14] Zeain, M.Y., Zakaria, Z., Abu, M., Al-Gburi, A.J.A., Alsariera, H., Toding, A., Alani, S., Al-Tarifi, M.A., Al-Heety, O.S., Lago, H. and Saeidi, T., "Design of helical antenna for next generation wireless communication," Prz. Elektrotechniczny, no. 11, pp. 96–99, 2020.
  • [15] Al-Gburi, A.J.A., Ibrahim, I.M., Zakaria, Z., Zeain, M.Y., Alwareth, H., Ibrahim, A.M. and Keriee, H.H., "High Gain of UWB CPW-fed Mercedes-Shaped Printed Monopole Antennas for UWB Applications," Prz. Elektrotechniczny, no. 5, pp. 70– 73, 2021.
  • [16] A. J. A. Al-gburi, I. M. Ibrahim, and Z. Zakaria, "A Miniature Raspberry Shaped UWB Monopole Antenna based on Microwave Imaging Scanning Technique for Kidney Stone Early Detection," Int. J. Psychosoc. Rehabil., vol. 24, pp. 1755–1763, 2020.
  • [17] A. J. A. Al-Gburi, I. Ibrahim, Z. Zakaria, and A. D. Khaleel, "Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure," ARPN J. Eng. Appl. Sci., vol. 14, no. 10, pp. 3390–3393.
  • [18] A. J. A. Al-gburi, I. M. Ibrahim, Z. Zakaria, and A. D. Khaleel, "Gain Improvement and Bandwidth Extension of Ultra-Wide Band Micro-Strip Patch Antenna Using Electromagnetic Band Gap Slots and Superstrate Techniques," J. Comput. Theor. Nanosci., vol. 17, pp. 985–989, 2020.
  • [19] A. J. A. Al-gburi et al., "High Gain of UWB Planar Antenna Utilising FSS Reflector for UWB Applications," Comput. Mater. Contin., vol. 70, no. 1, 2022.
  • [20] M. K. Abdulhameed, S. R. Hashim, N. K. Abdalhameed, and A. J. A. Al-Gburi, "Increasing radiation power in half width microstrip leaky wave antenna by using slots technique," Int. J. Electr. Comput. Eng., vol. 12, no. 1, 2022.
  • [21] R. Stevenson, M. Sazegar, A. Bily, M. Johnson and N. Kundtz, "Metamaterial surface antenna technology: Commercialization through diffractive metamaterials and liquid crystal display manufacturing," 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials), Chania, 2016, pp. 349-351.
  • [22] M. Duran-Sindreu et al., "Recent Advances in Metamaterial Transmission Lines Based on Split Rings," in Proceedings of the IEEE, vol. 99, no. 10, pp. 1701-1710, Oct. 2011.
  • [23] Sungjoon Lim, C. Caloz and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 161-173, Jan. 2005.
  • [24] Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, NJ, Hoboken:Wiley, 2006.
  • [25] T. Varum, A. Ramos and J. N. Matos, "Planar microstrip series-fed array for 5G applications with beamforming capabilities," 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, 2018, pp. 1-3.
  • [26] A. D. Khaleel, M. F. Mansor, N. Misran, and M. T. Islam, "Bandwidth Enhancement of Dielectric Resonator Antenna Using Complementary Hash Resonator," in 2019 IEEE 14th Malaysia International Conference on Communication (MICC), 2-4 Dec. 2019 2019, pp. 45-47.
  • [27] A. J. A. Al-gburi, I. Bin, M. Ibrahim, Z. Zakaria, N. Farzana, and B. Mohd, “Wideband Microstrip Patch Antenna for Sub 6 GHz and 5G Applications,” Prz. Elektrotechniczny, no. 11, pp. 26– 29, 2021.
  • [28] A. D. Khaleel, M. F. Mansor, N. Misran, and M. T. Islam, "Partial ground dielectric resonator antenna for LTE Femtocell base stations," in 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 11-13 Dec. 2016 2016, pp. 315-318.
  • [29] A. D. Khaleel, A. A.-R. T. Rahem, M. F. Bin Mansor, and C. K. Chakrabarty, "Design tri-band rectangular patch antenna for Wi-Fi, Wi-Max and WLAN in military band applications with radiation pattern suppression," Research Journal of Applied Sciences, Engineering and Technology, vol. 10, no. 12, pp. 1445-1448, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-714fd91e-34ae-4727-9b56-3e43bdde5957
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.