Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a robust control technique for small-scale unmanned helicopters to track predefined trajectories (velocities and heading) in the presence of bounded external disturbances. The controller design is based on the linearized state-space model of the helicopter. The multivariable dynamics of the helicopter is divided into two subsystems, longitudinallateral and heading-heave dynamics respectively. There is no strong coupling between these two subsystems and independent controllers are designed for each subsystem. The external disturbances and model mismatch in the longitudinal-lateral subsystem are present in all (matched and mismatched) channels. This model mismatch and external disturbances are estimated as lumped disturbances using extended disturbance observer and an extended disturbance observer based sliding mode controller is designed for it to counter the effect of these disturbances. In the case of heading-heave subsystem, external disturbances and model mismatch only occur in matched channels so a second order sliding mode controller is designed for it as it is insensitive to matched uncertainties. The control performance is successfully tested in Simulink.
Czasopismo
Rocznik
Tom
Strony
169--199
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., wzory
Twórcy
autor
- School of Automation Science & Engineering, South China University of Technology, Guangzhou Guangdong 510640, China
- Key Lab of Autonomous Systems and Networked Control,Ministry of Education,Guangzhou, Guangdong 510640, China and Unmanned System Engineering Center of Guangdong Province, China
autor
- School of Automation Science & Engineering, South China University of Technology, Guangzhou Guangdong 510640, China
- Key Lab of Autonomous Systems and Networked Control,Ministry of Education,Guangzhou, Guangdong 510640, China and Unmanned System Engineering Center of Guangdong Province, China
Bibliografia
- [1] J. G. Leishman: Principles of Helicopter Aerodynamics. Cambridge University Press 2006.
- [2] H. Shim, T. Koo, and F. Hoffmann: A comprehensive study of control design for an autonomous helicopter. Proceedings of the 37th IEEE Conference on Decision and Control (1998), 3653–3658.
- [3] E. N. Sanchez, H. M. Becerra, and C. M. Velez: Combining fuzzy pid and regulation control for an autonomous minihelicopter. Information Sciences, 177 (2007), 1999–2022.
- [4] E. Lee, H. Shim, and H. Park: Design of hovering attitude controller for a model helicopter. Proceedings of Society of Instrument and Control Engineers, Tokyo (1993), 1385–1389.
- [5] B. Guerreiro, C. Silvestre, and R. Cunha: Trajectory tracking H2 controller for autonomous helicopters. An application to industrial chimney inspection. 17th IFAC Symposium on Automatic Control in Aerospace, Toulouse, France (2007), 431–436.
- [6] I. B. Tijani, R. Akmeliawati, and A. Legowo: H∞ robust controller for autonomous helicopter hovering control. Aircraft Engineering & Aerospace Technology, 83 (2011), 363–374.
- [7] L. Mollov, J. Kralev, T. Slavov, and P. Petkov: μ-synthesis and hardware-in-the-loop simulation of miniature helicopter control system. Journal of Intelligent & Robotic Systems, 76 (2014), 315-351.
- [8] M. L. Civita, T. Kanade, W. Messner, and G. Papageorgiou: Design and flight testing of an H∞ controller for a robotic helicopter. Journal of Guidance Control & Dynamics, 29 (2006), 485–494.
- [9] M. F. Weilenmann and H. P. Geering: A test bench for rotorcraft hover control. AIAA Guidance, Navigation and Control Conference, California USA (1993) 1371–1382.
- [10] M. F. Weilenmann, U. Christen, and H. P. Geering: Robust helicopter position control at hover. American Control Conference, Maryland USA (1999), 2491–2495.
- [11] I. A. Raptis, K. P. Valavanis, and G. J. Vachtsevanos: Linear tracking control for small-scale unmanned helicopters. IEEE Transation on Control System Technology, 20 (2012), 995–1010.
- [12] C. Fan, S. Guo, and D. Li: Nonlinear predictive attitude control with a disturbance observer of an unmanned helicopter on the test bench. IEEE 5th International Conference on Robotics, Automation and Mechatronics, Qingdao China (2011), 304–309.
- [13] D. C. Robinaon, K. Ryan, and H. Chung: Helicopter hovering attitude control using a direct feedthrough Simultaneous state and disturbance Observer. IEEE Conference on Control Applications, Sydney Australia (2015), 633–638.
- [14] V. I. Utkin: Sliding Mode in Control and Optimization. Springer, 1992.
- [15] H. Liu and S. Li: Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Transaction of Industrial Electronics, 59 (2012), 1171–1183.
- [16] D. Chwa, J. Y. Choi, and J. H. Seo: Compensation of actuator dynamics in nonlinearmissile control. IEEE Transactions of Control System Technology, 12 (2004), 620–626.
- [17] W. H. Chen: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. Journal of Guidance Control & Dynamics, 26 (2003), 161–166.
- [18] Y. He, H. Pei, and T. Sun: Robust tracking control of helicopters using back-stepping with disturbance observers. Asian Journal of Control, 16 (2014), 1–16.
- [19] Y. W. Liang, L. W. Ting, and L. G. Lin: Study of reliable control via an integral-type sliding mode control scheme. IEEE Transaction of Industrial Electronics, 59 (2012), 3062–3068.
- [20] Q. Hu, L. Xie, Y. Wang, and C. Du: Robust tracking-following control of hard disk drives using improved integral sliding mode combined with phase lead peak filter. International Journal of Adaptive Control & Signal Processing, 22 (2008) 413–430.
- [21] W. J. Cao and J. X. Xu: Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Transactions of Automatic Control, 49 (2004), 1355–1360.
- [22] J. Yang, S. Li, and X. Yu: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Transactions on Industrial Electronics, 60 (2013), 160–169.
- [23] D. Ginoya, P. D. Shendge, and S. B. Phadke: Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer. IEEE Transactions on Industrial Electronics, 61 (2014), 1983–1992.
- [24] I. Ullah and H. Pei: Disturbance observer based sliding mode control for unmanned helicopter hovering operations in presence of external disturbances. Incas Bulletin, 10 (2018), 103–118.
- [25] A. Budiyono and S. S. Wibowo: Optimal tracking controller design for a small scale helicopter. Journal of Bionic Engineering, 4 (2007), 272–279.
- [26] V. Gavrilets: Dynamic model for a miniature aerobatic helicopter. Handbook of Unmanned Aerial Vehicles. Springer, (2015) 279-306.
- [27] S. Tang, L. Zhang, and S.K. Qian: Second-order sliding mode attitude controller design of a small-scale helicopter. Science China Information Sciences, 59 (2016), 112209–112214.
- [28] C. Liu, W. H. Chen, and J. Andrews: Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Engineering Practice, 20 (2012), 20258–268.
- [29] A. Levant: Universal Single-Input-Single-Output (SISO) Sliding-Mode Controllers with Finite-Time Convergence. IEEE Transactions on Automatic Control, 46 (2001), 1447–1451.
- [30] S. Tang, Z. Q. Zheng, and S. K. Qian: Nonlinear system identification of a small-scale unmanned helicopter. Control Engineering Practice, 25 (2014), 1–15.
Uwagi
EN
1. This work is supported in part by the Scientific Instruments Development Program of National Natural Science Foundation of China (NSFC) under grant 615278010 and the Science & Technology Planning Project of Guangdong, China under grant 2017B010116005.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-714fd3ee-ea25-4a96-9408-62909f595e82