PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using of Laplacian Re-decomposition image fusion algorithm for glioma grading with SWI, ADC, and FLAIR images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Based on the tumor’s growth potential and aggressiveness, glioma is most often classified into low or high-grade groups. Traditionally, tissue sampling is used to determine the glioma grade. The aim of this study is to evaluate the efficiency of the Laplacian Re-decomposition (LRD) medical image fusion algorithm for glioma grading by advanced magnetic resonance imaging (MRI) images and introduce the best image combination for glioma grading. Material and methods: Sixty-one patients (17 low-grade and 44 high-grade) underwent Susceptibility-weighted image (SWI), apparent diffusion coefficient (ADC) map, and Fluid attenuated inversion recovery (FLAIR) MRI imaging. To fuse different MRI image, LRD medical image fusion algorithm was used. To evaluate the effectiveness of LRD in the classification of glioma grade, we compared the parameters of the receiver operating characteristic curve (ROC). Results: The average Relative Signal Contrast (RSC) of SWI and ADC maps in high-grade glioma are significantly lower than RSCs in low-grade glioma. No significant difference was detected between low and high-grade glioma on FLAIR images. In our study, the area under the curve (AUC) for low and high-grade glioma differentiation on SWI and ADC maps were calculated at 0.871 and 0.833, respectively. Conclusions: By fusing SWI and ADC map with LRD medical image fusion algorithm, we can increase AUC for low and high-grade glioma separation to 0.978. Our work has led us to conclude that, by fusing SWI and ADC map with LRD medical image fusion algorithm, we reach the highest diagnostic accuracy for low and high-grade glioma differentiation and we can use LRD medical fusion algorithm for glioma grading.
Rocznik
Strony
261--269
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Bibliografia
  • 1. Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205(12):613-621. https://doi.org/10.1016/j.cancergen.2012.10.009
  • 2. Sasaki S, Tomomasa R, Nobusawa S, et al. Anaplastic pleomorphic xanthoastrocytoma associated with an H3G34 mutation: a case report with review of literature. Brain Tumor Pathol. 2019;36(4):169-173. https://doi.org/10.1007/s10014-019-00349-8
  • 3. Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol. 2005;60(4):493-502. https://doi.org/10.1016/j.crad.2004.09.009
  • 4. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-820. https://doi.org/10.1007/s00401-016-1545-1
  • 5. Law M, Oh S, Babb JS. Low-grade gliomas: Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging-prediction of patient clinical rewsponse (Radiology (2006) 238,(658-667)). Radiology. 2008;246(3):989. https://doi.org/10.1148/radiol.2382042180
  • 6. Arvinda HR, Kesavadas C, Sarma PS, et al. RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol. 2009;94(1):87-96. https://doi.org/10.1007/s11060-009-9807-6
  • 7. Hsu CC, Watkins TW, Kwan GNC, Haacke EM. Susceptibility‐weighted imaging of glioma: update on current imaging status and future directions. J Neuroimaging. 2016;26(4):383-390. https://doi.org/10.1111/jon.12360
  • 8. Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim J-H, Sohn C-H. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One. 2014;9(9):e108335. https://doi.org/10.1371/journal.pone.0108335
  • 9. Santarosa C, Castellano A, Conte GM, et al. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur J Radiol. 2016;85(6):1147-1156. https://doi.org/10.1016/j.ejrad.2016.03.020
  • 10. Jain KK, Sahoo P, Tyagi R, et al. Prospective glioma grading using single-dose dynamic contrast-enhanced perfusion MRI. Clin Radiol. 2015;70(10):1128-1135. https://doi.org/10.1016/j.crad.2015.06.076
  • 11. Kim HS, Kim SY. A prospective study on the added value of pulsed arterial spin-labeling and apparent diffusion coefficients in the grading of gliomas. Am J Neuroradiol. 2007;28(9):1693-1699. https://doi.org/10.3174/ajnr.A0674
  • 12. Wang Q, Zhang H, Zhang J, et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from lowgrade gliomas: a systematic review and meta-analysis. Eur Radiol. 2016;26(8):2670-2684. https://doi.org/10.1007/s00330-015-4046-z
  • 13. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815-850. https://doi.org/10.1118/1.597854
  • 14. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol. 2009;30(2):232-252. https://doi.org/10.3174/ajnr.A1461
  • 15. Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility‐weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging An Off J Int Soc Magn Reson Med. 2006;24(1):41-51. https://doi.org/10.1002/jmri.20598
  • 16. Li C, Ai B, Li Y, Qi H, Wu L. Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol. 2010;75(1):e81-e85. https://doi.org/10.1016/j.ejrad.2009.08.003
  • 17. Ding Y, Xing Z, Liu B, Lin X, Cao D. Differentiation of primary central nervous system lymphoma from high‐grade glioma and brain metastases using susceptibility‐weighted imaging. Brain Behav. 2014;4(6):841-849. https://doi.org/10.1002/brb3.288
  • 18. Minati L, Węglarz WP. Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review. Concepts Magn Reson Part A An Educ J. 2007;30(5):278-307. https://doi.org/10.1002/cmr.a.20094
  • 19. Wang Q, Lei D, Yuan Y, Xiong N. Accuracy of ADC derived from DWI for differentiating high-grade from low-grade gliomas: Systematic review and meta-analysis. Medicine (Baltimore). 2020;99(8). https://doi.org/10.1097/MD.0000000000019254
  • 20. Soliman RK, Essa AA, Elhakeem AAS, Gamal SA, Zaitoun MMA. Texture analysis of apparent diffusion coefficient (ADC) map for glioma grading: Analysis of whole tumoral and peri-tumoral tissue. Diagn Interv Imaging. 2021;102(5):287-295. https://doi.org/10.1016/j.diii.2020.12.001
  • 21. Phuttharak W, Thammaroj J, Wara-Asawapati S, Panpeng K. Grading Gliomas Capability: Comparison between Visual Assessment and Apparent Diffusion Coefficient (ADC) Value Measurement on Diffusion-Weighted Imaging (DWI). Asian Pacific J Cancer Prev APJCP. 2020;21(2):385. https://doi.org/10.31557/APJCP.2020.21.2.385
  • 22. Sadeghi N, D'haene N, Decaestecker C, et al. Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. Am J Neuroradiol. 2008;29(3):476-482. https://doi.org/10.3174/ajnr.A0851
  • 23. Ma X, Lv K, Sheng J, et al. Application evaluation of DCE‑MRI combined with quantitative analysis of DWI for the diagnosis of prostate cancer. Oncol Lett. 2019;17(3):3077-3084. https://doi.org/10.3892/ol.2019.9988
  • 24. Hilario A, Ramos A, Perez-Nunez A, et al. The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative grading of diffuse gliomas. Am J Neuroradiol. 2012;33(4):701-707. https://doi.org/10.3174/ajnr.A2846
  • 25. Saini J, Gupta PK, Sahoo P, et al. Differentiation of grade II/III and grade IV glioma by combining "T1 contrast-enhanced brain perfusion imaging" and susceptibility-weighted quantitative imaging. Neuroradiology. 2018;60(1):43-50. https://doi.org/10.1007/s00234-017-1942-8
  • 26. Qi G, Wang J, Zhang Q, Zeng F, Zhu Z. An integrated dictionary-learning entropy-based medical image fusion framework. Futur Internet. 2017;9(4):61. https://doi.org/10.3390/fi9040061
  • 27. Wang K, Qi G, Zhu Z, Chai Y. A novel geometric dictionary construction approach for sparse representation based image fusion. Entropy. 2017;19(7):306. https://doi.org/10.3390/e19070306
  • 28. Zhu Z, Chai Y, Yin H, Li Y, Liu Z. A novel dictionary learning approach for multi-modality medical image fusion. Neurocomputing. 2016;214:471-482. https://doi.org/10.1016/j.neucom.2016.06.036
  • 29. Zhu Z, Yin H, Chai Y, Li Y, Qi G. A novel multi-modality image fusion method based on image decomposition and sparse representation. Inf Sci (Ny). 2018;432:516-529. https://doi.org/10.1016/j.ins.2017.09.010
  • 30. Li X, Guo X, Han P, Wang X, Li H, Luo T. Laplacian redecomposition for multimodal medical image fusion. IEEE Trans Instrum Meas. 2020;69(9):6880-6890. https://doi.org/10.1109/TIM.2020.2975405
  • 31. Das M, Gupta D, Radeva P, Bakde AM. NSST domain CT-MR neurological image fusion using optimised biologically inspired neural network. IET Image Process. 2020;14(16):4291-4305. https://doi.org/10.1049/iet-ipr.2020.0219
  • 32. Wang G, Li W, Huang Y. Medical image fusion based on hybrid three-layer decomposition model and nuclear norm. Comput Biol Med. 2021;129:104179. https://doi.org/10.1016/j.compbiomed.2020.104179
  • 33. Pouratian N, Asthagiri A, Jagannathan J, Shaffrey ME, Schiff D. Surgery Insight: the role of surgery in the management of low-grade gliomas. Nat Clin Pract Neurol. 2007;3(11):628-639. https://doi.org/10.1038/ncpneuro0634
  • 34. Upadhyay N, Waldman A. Conventional MRI evaluation of gliomas. Br J Radiol. 2011;84(special_issue_2):S107-S111. https://doi.org/10.1259/bjr/65711810
  • 35. Al-Agha M, Abushab K, Quffa K, Al-Agha S, Alajerami Y, Tabash M. Efficiency of High and Standard b Value Diffusion-Weighted Magnetic Resonance Imaging in Grading of Gliomas. J Oncol. 2020;2020. https://doi.org/10.1155/2020/6942406
  • 36. Zhang L, Min Z, Tang M, Chen S, Lei X, Zhang X. The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. J Neurol Sci. 2017;373:9-15. https://doi.org/10.1016/j.jns.2016.12.008
  • 37. Thust SC, Hassanein S, Bisdas S, et al. Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis. Eur Radiol. 2018;28(9):3779-3788. https://doi.org/10.1007/s00330-018-5351-0
  • 38. Li X, Zhu Y, Kang H, et al. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging. 2015;15(1):1-9. https://doi.org/10.1186/s40644-015-0039-z
  • 39. Gaudino S, Marziali G, Pezzullo G, et al. Role of susceptibility-weighted imaging and intratumoral susceptibility signals in grading and differentiating pediatric brain tumors at 1.5 T: a preliminary study. Neuroradiology. 2020;62(6):705-713. https://doi.org/10.1007/s00234-020-02386-z
  • 40. Mohammed W, Xunning H, Haibin S, Jingzhi M. Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging. 2013;13(2):186. https://doi.org/10.1102/1470-7330.2013.0020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-714d2c41-2a60-4ee7-b834-20f29a80c2c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.