Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The applicability of boric acid for the production of TiB2/TiC/ZrO2s.s. nanocomposites using the in situ method
Języki publikacji
Abstrakty
Ocenie poddano przydatność użycia kwasu ortoborowego do wytwarzanie metodą in situ nanometrycznych wtrąceń TiB2 i TiC w tetragonalnej osnowie tlenku cyrkonu. Kwas ortoborowy, żywicę fenolowo-formaldehydowę i nanoproszek cyrkoniowy stabilizowany 2,5% mol. Y2O3 i domieszkowany 18% mol. TiO2 zastosowano do syntezy wtrąceń TiB2 i TiC w cząstkach tlenku cyrkonu, którą prowadzono w zakresie 1100-1600 °C w próżni. Tak otrzymane proszki kompozytowe zawierały nanocząstki TiB2 i TiC o rozmiarach odpowiednio 60-80 nm i 25-40 nm. Proszki kompozytowe spiekano w temperaturze 1500 °C w próżni, aby uzyskać gęste materiały kompozytowe. Szczegółowej charakterystyce poddano skład fazowy proszków i kompozytów, zmierzono rozmiar cząstek TiB2 i TiC w proszkach, określono stan zagęszczenia spieków, zbadano mikrostrukturę i wybrane właściwości kompozytów. Właściwości mechaniczne kompozytów porównano z materiałem 3Y-TZP. Zbadano wpływ temperatury syntezy in situ na skład fazowy proszków i spieków oraz na właściwości mechaniczne kompozytów, wskazując rolę jaką pełni kwas ortoborowy w kształtowaniu się tych właściwości. Otrzymano gęste kompozyty z przewagą fazy tetragonalnej w osnowie cyrkoniowej, zawierające submikronowe i w części nanometryczne wtrącenia TiB2 i TiC, które charakteryzowały się podwyższoną odpornością na zużycie ścierne.
The applicability of the use of orthoboric acid to production of nanometric inclusions of TiB2 and TiC in the tetragonal zirconium oxide matrix by the in situ method was evaluated. Orthoboric acid, phenol-formaldehyde resin and zirconia nanopowder stabilized with 2.5 mol% Y2O3 and doped with 18 mol% TiO2 were used for the synthesis of TiB2 and TiC inclusions in zirconia particles, which was carried out at 1100-1600 C in vacuum. The composite powders thus obtained contained TiB2 and TiC nanoparticles with sizes of 60-80 nm and 25-40 nm, respectively. Composite powders were sintered at 1500 C under vacuum to obtain dense composite materials. The phase composition of powders and composites was characterized in detail, the particle size of TiB2 and TiC in powders was measured, the state of compacting of sinters was determined, the microstructure and selected properties of composites were examined. The mechanical properties of the composites were compared with the 3Y-TZP material. The influence of the in situ synthesis temperature on the phase composition of powders and sinters as well as the mechanical properties of composites was examined, indicating the role of orthoboric acid in the formation of these properties. Dense composites with predominance of the tetragonal phase in the zirconium matrix were obtained, containing submicron and in part nanometric inclusions of TiB2 and TiC, which were characterized by increased resistance to abrasion.
Wydawca
Czasopismo
Rocznik
Tom
Strony
371--389
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
- [1] Watanabe, T., Shoubu, K.: Mechanical properties of hot pressed TiB2-ZrO2 composites, J. Am. Ceram. Soc., 68, (1985), C34-C36.
- [2] Vleugels, J., Van Der Biest, O.: Development and characterisation of Y-TZP composites with TiB2, TiN, TiC and TiCN, J. Am. Ceram. Soc., 82, 10, (1999), 2717–2720.
- [3] Basu, B., Vleugels, J., Van Der Biest, O.: Development of ZrO2–TiB2 composites: role of residual stress and starting powders, J. Alloys Compd., 365, 1-2, (2004), 266-270.
- [4] Basu, B., Vleugels, J., Van der Biest, O.: Toughness Optimisation of ZrO2-TiB2 composites, Key Eng. Mater., 206-213, (2002), 1177-1180.
- [5] Basu, B., Vleugels, J., Van der Biest, O.: Processing and mechanical properties of ZrO2-TiB2 composites, J. Eur. Ceram. Soc., 25, (2005), 3629-3637.
- [6] Hannink, R. H. J., Kelly, P. M., Muddle, B. C.: Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 83, (2000), 461-487.
- [7] Cutler, R. A.: Engineering properties of borides, Engineered Materials Handbook, Ceramics and Glasses, ASM International, Vol. 4, The Materials Information Society, USA, 1991, 787.
- [8] Gleiter, H.: Nanostructured materials: basic concepts and microstructure, Acta Mater., 48, 1, (2000), 1-29.
- [9] Komeya, K., Matsui. M.: High Temperature Engineering Ceramics, in Materials Science and Technology - Vol. 11/12 (Cahn, R. W., Haasen P., Kramer E. J., series eds.), Structure and Properties of Ceramics - Vol. 11 (Swain, M., vol. ed.), Wiley-VCH Verlag GmbH & co. KGaA, Weinheim, 2005, 517-565.
- [10] Wang, X. H., Chen, I. W.: Sintering of Nanoceramics, in Nanomaterials Handbook, Gogotsi. Y., ed.,. Taylor & Francis Group, Boca Raton, 2006, 361-384.
- [11] Pyda, W.: TiC inclusions synthesized in situ in the zirconia matrix, in Proc. II ICCST: 3-11 June 1998, Adali, S., Morozov, E. V., Verijenko, V. E., eds, Department of Mechanical Engineering, University of Natal, Durban, 1998, 195-200.
- [12] Liu, J., Li, J., Wang, H., Huang, Y.: In situ synthesis of yttria-stabilized tetragonal zirconia polycrystalline powder containing dispersed titanium carbide by selective carbonization, J. Am. Ceram. Soc., 82, (1999), 1611-1613.
- [13] Moskała, N., Pyda, W.: Development and characterization of zirconia composite powder containing inclusions of titanium diboride and zirconium monoboride, in Proceedings of the 10th International Conference of the European Ceramic Society: June 17–21, 2007 Berlin, J. G. Heinrich, C. G. Aneziris (eds.), Baden-Baden: Göller Verlag GmbH, 2007, 280-283, ISBN10:3-87264-022-4.
- [14] Pyda, W.: Microstructure and properties of zirconia based nanocomposites derived from a powder containing TiC crystallised in situ and carbon, Ceram. Int., 30, (2004), 333-342.
- [15] Pyda, W.: Bulk and surface-carburised tetragonal zirconia polycrystals, Ceramika/Ceramics, vol. 97, (2006), 245-256.
- [16] Haberko, K., Pyda, W., Pędzich, Z., Bućko, M. M.: A TZP matrix composite with in situ grown TiC inclusions, J. Eur. Ceram. Soc., 20, (2000), 2649-2654.
- [17] Pyda, W. Morgiel: Nano-TiC obtained through a reaction of MWCNTs with Zr(Y,Ti)O2, J. Microsc., 237, (2010), 487-496.
- [18] Pyda, W.: Nano-ceramic aspect of preparation and processing of the zirconia nano-powders, Mater. Sci. Poland, 26, (2008), 403-412.
- [19] Pyda, W., Moskała, N.: A zirconia nanocomposite with the in situ synthesized titanium diboride inclusions, in Proc. of 16th International Conference on Composite Materials, Kyoto, Japan, 2007.
- [20] R.A. Smith, Basic Geology and Chemistry of Borate - ..., Am. Ceram. Soc. Bull., 81, 8, (2002), 61-64.
- [21] de Florio, D. Z., Muccillo, R.: Effect of boron oxide on the cubic-to-monoclinic phase transition in yttria-stabilized zirconia, Mater. Res. Bull., 39, (2004), 1539-1548.
- [22] X. Guo, A new destabilization phenomenon in fully-stabilized zirconia, J. Mater. Sci. Lett., 15, 1, (1996), 38.
- [23] Rećko, W. M., Radomski, J., Waszkiewicz, A.:Przegląd własności fizykochemicznych i technologii otrzymywania trójtlenku boru do celów półprzewodnikowych, Mater. Elektron., 1 (9), (1975), 15-21.
- [24] Balci, S., Sezgi, N., Eren, E.: Boron Oxide Production Kinetics Using Boric Acid as Raw Material, Ind. Eng. Chem. Res., 51, 34, (2012), 11091–11096, doi:10.1021/ie300685x.
- [25] Sidor, J.: Mechanical devices used for production of metallic, ceramic-metallic alloys or nanomaterials, Arch. Metall. Mater., 52, (2007), 407-414.
- [26] Rietveld, H. M.: Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Cryst., 22, 1, (1967), 151-152.
- [27] Rietveld, H. M.: A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst., 2, 2, (1969), 65-71.
- [28] Scherrer, P.: Göttinger Nachrichten Gesell., 2, (1918), 98.
- [29] Niihara, K. A.: A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2, (1983), 221-223.
- [30] Moskała, N., Pyda, W., Czechowski, K.: Ocena trwałości płytek ostrzowych ZrO2/TiB2 w trakcie skrawania na sucho stali i żeliwa, Mater. Ceram. / Ceram. Mater./, 65, 2, (2013), 156-162.
- [31] PDF-2 release 2004 of the Powder Diffraction File, ICDD 2004.
- [32] Shabalin, I. L., Luсhka, M. V., Shabalin, L. I.: Vacuum SHS in systems with group IV transition metals for production of ceramic compositions, Phys. Chem. Solid State, 8, 1, (2007), 159-175.
- [33] Arroyave, R., Kaufman, L., Eagar, T. W.: Thermodynamic Modeling of the Zr-O System, Calphad, 26, 1, (2002), 95-118.
- [34] Suresh, A., Mayo, M. J.: Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, J. Am. Ceram. Soc., 86, (2003), 360-362.
- [35] Smoot, T.W., Whittemore, D.S.: Destabilization of Zirconia, J. Am. Ceram. Soc., 48, 3, (1965), 163.
- [36] Song, Y., Smith, F. W.: Phase diagram for the interaction of oxygen with SiC, Appl. Phys. Lett., 81, 16, (2002) 3061-3063.
- [37] Zaykoski, J. A., Opeka, M. M., Smith, L. H., Tal, I. G.: Synthesis and Characterization of YB4 Ceramics, J. Am. Ceram. Soc., 1, 7, (2011), 1-7.
- [38] Rühle, M., Heuer, A. H.: Phase Transformations in ZrO2-containing Ceramics: II, The Martensitic Reaction in t-ZrO2, in Science and Technology Zirconia II (N. Claussen, M. Ruhle, A. H. Heuer (eds), American Ceramic Society, Columbus, Ohio, 1984, 14-32.
- [39] Storms, Z.: Tugoplavkije karbidy, Moscow, 1970.
- [40] Preiss, H., Bergen, L. M., Schultze, D.: Studies on the Carbothermal Preparation of Titanium Carbide from Different Gel Precursors, J. Eur. Ceram. Soc., 19, (1999), 195-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7149dc7d-c054-4a7e-93f8-9f70287b391a