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The present investigation is concerned with a two dimensional axisymmetric problem in a homogeneous
isotropic micropolar porous thermoelastic circular plate by using the eigen value approach. The Laplace and
Hankel transform are used to solve the problem. The expression of displacements, microrotation, volume fraction
field, temperature distribution and stresses are obtained in the transformed domain subjected to thermomechanical
sources. A computer algorithm is developed for numerical computations. To obtain the resulting quantities in a
physical domain, a numerical inversion technique is used. The resulting quantities are depicted graphically for a
specific model. Some special cases are also deduced.
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1. Introduction

The theory of micropolar elasticity developed by Eringen [1] aroused much interest because of its
possible utility in investigating the deformation properties of solids for which the classical theory is
inadequate. The micropolar theory is significantly useful for investigating materials consisting of bar-like
molecules which exhibit microrotation effects and support body and surface couples. A special micropolar
material was fabricated in which a uniformly distributed rigid aluminium shot was cast in an elastic epoxy
matrix by Gauthier [2] and the values of the relevant parameters based on specimen of aluminium-epoxy
composite were investigated.

The linear theory of micropolar thermoelasticity was developed by Eringen [3] and Nowacki [4] to
include thermal effects. Touchert ef al. [S] developed the linear theory of micropolar thermoelasticity in
which Duhamel-Neumann analogy is extended to micropolar materials and the thermoelastic problem is
reduced to a corresponding isothermal one with body forces and couples. Boschi and Iesan [6] investigated
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the linear theory of generalized micropolar thermoelasticity. Passeralla [7] established some results in
micropolar thermoelasticity.

Cowin and Nunziato [8] investigated the linear theory of elastic materials with voids. This theory
differs significantly from the classical linear elasticity in that the volume fraction corresponding to the void
volume is taken as an independent kinematical variables. Several applications of the theory are developed,
including the response to homogeneous deformations, pure bending of a beam, and small amplitude acoustic
waves. In each of these applications, the change in the volume fraction field induced by the deformation is
determined. Iesan [9] studied the shock waves in micropolar elastic materials with voids. Iesan [10]
developed the linear theory of thermoelastic materials with voids. Scarpetta [11] studied the fundamental
solution for the differential system of micropolar elasticity with voids for the steady vibration case and
reciprocal properties are also explored. Marin [12] studied the mixed boundary value problem in elastostatic
micropolar materials with voids. Marin [13] applied the general results from the theory of elliptic equations to
obtain the existence and uniqueness of the generalized solutions for the boundary value problems in micropolar
elasticity with voids.

Ciarletta et al. [14] constructed the fundamental solutions of the systems of equations of the steady
oscillation of the linear theory of micropolar thermoelasticity for materials with voids. Kumar and Panchal
[15] studied the propagation of circular crested waves in a micropolar porous medium possessing cubic
symmetry. Ailawalia and Kumar [16] studied the thermomechanical deformation of micropolar generalized
thermoelastic materials with voids under the influence of various sources. Othman and Youssef [17] studied
the deformation of a micropolar thermoelastic solid with voids considering the influence of various sources
acting on the plane interface. Sharma and Marin [18] studied the reflection of plane waves at the free surface
of a micropolar generalized thermoelastic solid with distinct conductive and thermodynamic temperatures.
Sharma et al. [19] studied the propagation of Lamb waves in a homogeneous, isotropic thermoelastic
micropolar solid with two temperatures bordered with layers of inviscid liquid. Sharma [20] studied the
effect of two temperatures on the reflection coefficient for a micropolar thermoelastic solid. Sharma and
Kumar [21] studied the propagation of plane waves in a thermoviscoelastic medium with voids. Kumar et al.
(2015) constructed the fundamental solution to a system of micropolar viscothermoelastic solids with voids
in terms of elementary functions. Marin [23] formulated a heat flux dependent theory for micropolar porous
materials.

2. Basic equations

Following Kumar and Partap [24], the constitutive relations and the field equations in a micropolar
porous thermoelastic medium with body forces, body couples, heat sources and extrinsic equilibrated body
force are given by

0 .
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where u is the displacement vector, ¢ is the microrotation vector, p is the density, j is the micro inertia,
K ;ﬂ is the coefficient of thermal conductivity, 7' is the change in temperature of the medium at any time, C *

is the specific heat at constant strain, d)* is the change in volume fraction field, A, u, K, a, B,y are
micropolar constants, a;,b,&;,w,,m and 7y are the elastic constants due to the presence of voids,
% =(3l+2p+K )oct, o, is the coefficient of linear thermal expansion, t,, T;, are the thermal relaxation

times, tl-j 5

, 0 1o 1& & :
\% 26_2+_a+_2§+8_2 is the Laplacian operator. For L-S theory, 1, =0, t, >0, and n,=1. For
A r z
G-L theory, t; 21, >0 and n, =0.

my; are the stress tensor and couple stress tensor, §; is the Kronecker delta and

3. Formulation of the problem

Consider an infinite, homogeneous isotropic micropolar porous thermoelastic circular plate of
thickness 24 occupying the region defined by 0<r <o, —h<z<h. The cylindrical polar coordinates

(r, 0, z) are introduced. The plate is axisymmetric with the z-axis as the axis of symmetry. The origin of
the co- ordinate system (r, 0, z) is taken as the middle surface of the plate and the z-axis normal to it along

the thickness. We take the » —z plane as the plane of incidence. The initial temperature in the thick plate is
given by a constant temperature 7j,.
For a two dimensional problem, we take

uz(ur,(), uz), ¢=(0, ¢9,0). 3.1

The dimensionless quantities are given by
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We define the Laplace and Hankel transform as
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Equations (2.1)-(2.4) with the aid (3.1)-(3.4) recast into the form
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The system of Eqs (3.5)-(3.9) can be written as

I (5.2.5) = A(55) (5:2.5) (3.10)
yA
where
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To solve Eq.(3.10), we take
W(é,z,s) = X(é,s)eqz , (3.12)
with
A(&5)W (8.2.5) =W (E.2.5). (3.13)

which leads to the eigen value problem. The characteristic equation corresponding to Eq.(3.13) on
expansion, yields

q"" =1,0° + 034" —h3q” gt —hs =0 (3.14)

where A;, A,, A3, A, and A; are given in Appendix I and +¢;, (i=1,2,3,4,5) are the roots of Eq.(3.14).

The eigenvectors X; (E;,s) corresponding to the eigenvalues g; may be obtained by solving

[A-ql]X;(&s)=0.
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The set of eigen vector X; (&,s) can be written as

X,-(a,s){jﬁ”(&’s)}

iZ((th)
where
a4, | ai%z
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—a;q; | aif]f
b, —b;q;
Xi(&s)=| =€ |, X;(&s)=| &g, |» J=i+5 g=—q3i=12,34,5
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L & | | —€i4; |

Where a;,b;.,d;,e;,A;,r;,15,13,7, and 15 are given in Appendix 11
We assume the solution of Eq.(3.12) as

5
w(Ezs)= ZKiXi (&,5)cosh(g;z)
i=1
where K;,K,,K;,K, and K are arbitrary constants.

4. Boundary conditions

The boundary conditions at the surface z=+/A of the plate are given by

Cj{—jzzzH(a—r), 4.1)
o(r)H

.=y (?ﬁr(z) 42)

. =0, 43)

myy =0, 4.4
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dy” _
_=0. (4.5)

(0) is a Dirac delta function and (/) is the Heavy side unit step function and ¢_,, ¢,. and m,q are given by

ou, Oou, u 0
=(A+2u+K Ll-v|l+1 T+b 4.6
(A+2u+K) 6z (6r rj ( %5 j ¢, (4.6)
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From Eqgs (3.2)-(3.4) and (3.15)-(4.8), after some algebraic calculations, we get
U B
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and A;(i=1,2,3,4,5) are obtained from A by replacing i™ column of A with|Q,R, 0,0, 0|tr ,
also  S; =¢q;cosh(g;h), T, =L;cosh(g;h), U; =M, cosh(g;h), V;=P cosh(g;h),
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*2
P =V§L4‘1", i=1,2,345.
pey

Particular cases

(1) Without the thermal effect, the boundary conditions (4.1)-(4.5) for a micropolar porous medium
reduce to the form

l.=Pp— > I =0, m.q =0, %:0’

and following the same procedure, the corresponding expressions for displacements, microrotation, volume
fraction field and stresses for a micropolar porous are obtained as

4

(u ﬁz,a)e,&)*):éZ(aiqi, b.—E, d;)A: cosh(g;z),

L 1< .
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L
V] VZ V3 V4
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and A;F (i=1,2,3,4) are obtained from A’ by replacing i™ column of A* with|R, 0,0, 0|tr, also

T' =L cosh(g;h), U; =M; cosh(g;h), V; =F cosh(g;h), W, =d;q;cosh(g;h),

pc

. | Meayq
L zl%wﬂi +(W—“2+Kjbiqi:|ﬂ i=1,2,3,4,
€

i 2 2 2
pc;  pe pc

*2

Pi*: 'Y&(04 qz" i=1,2,34.
pe;

(i1) Neglecting the porous effect, i.e., a;, b, §;, ,, y and ¢* — 0, yields the boundary conditions for

micropolar thermoelastic medium as
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and

ill—T=Z2H(a—r), l‘zz=poM =0,
2

corresponding expressions are given by

4

~ ~ I sk
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Si** =eq, cosh(ql-h), 7}** = Lj* cosh(qih), U;k* = M,** cosh(ql-h), VI-** = PI-** cosh(qih),

(iii)
(iv)

S.

and

t 2 2

o | MEaiq; 2u+ K
- Ezazqz _(]+Tls)ei +(“—“+Jbiqi R i:],2,3,4
pc; pey

l pei  pe \ pef
*2

Pj‘*:YE-’Lﬂ, i=1,2,34.
pe;

Taking t;,=0,m,=1, in Eqs (4.9)-(4.10), yields the corresponding expressions for micropolar

porous thermoelastic with one relaxation time.
The corresponding expressions for a micropolar porous thermoelastic with two relaxation times are
obtained by taking t; >0, n, =0 in Eqs (4.9)-(4.10).

Inversion of transforms

The transformed displacements, microrotation vector, volume fraction field, temperature distribution
stresses are of the form f (F;,z,s) and to obtain the function f (r,z,t), the inversion of the Hankel

transform is of the form
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F(&z,s) j F(&z,s)J, (&r)dE . (5.1)
0

The inversion formula for the Laplace transforms is given as

C+10

f(r,z,t)zz—fTE J. f(r,z,s)e_”ds (5.2)

where ¢ is an arbitrary constant greater than all real parts of the singularities of f(r,z,l).

6. Numerical results and discussion

The values of micropolar parameters for numerical computations are given by Eringen [25]
A=94x101"Nm™?, u=4.0x10""Nm™, K=1.0x10""Nm=,
p=1.74x10°Kgm™>, j=02x10"m?, y=0.779x107°N,

Following Dhaliwal and Singh [26], we take the values of thermal parameters as
C =1.04x10°JKg 'K, K;=1.7x10°Jm™'s7'K™", o, =2.33x107 K",

1) =6.131x ]0_13S€C, T; =8.765 % ]0_13sec, m=1.13849x10""N / m2,

T,=0.298x10°K
The values of void parameters are taken as

o, =3.688x107° N, b=1.138494x10""N /m?, &, =1.1475x10"" N/ m?,

x=1.1753x107""m?, ©,=0.0787x107' N xsec/m*.

The variations of displacements, microrotation, volume fraction field, temperature distribution and
stresses with distance r in the case of a micropolar thermoelastic porous medium (MTPM), micropolar
thermoelastic medium (MTM) and micropolar porous medium (MPM) are shown in Figs 1-8, respectively.
In all these figures, a solid line ( ), a small dash line (- - - - - ) and a dash line with centred symbol
(= — - —) are used for MTPM, MPM and MTM, respectively.
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Fig.1. Variations of displacement of u,. .

Figure 1 depicts that the value of u, initially decreases for /<r</.8 and then oscillates for
1.8 <r <8 with large amplitude for MTPM, MTM and MPM. For MTM, u, has a maximum value at the
beginning and a minimum value for 3.4<r<7.4 in comparison with MTPM and MPM. The oscillation
behavior is not uniform for the three cases.

2.5

MTPM
2P 4
\ -
'
: RIS E—

&
T
.
.
e
»
o

Normal Displacement u,

Distance r
Fig.2. Variations of normal displacement ., .

Figure 2 shows that the value of u_, which initially increases for /<r</.8 and then oscillates for
the whole range with large amplitude for MTPM and MPM. The value of u, for MTM decreases for

1<r<1.7, increases for /.7<r<2.8 and then rapidly decreases for 2.8§<r<§. The variation and
behavior for MTPM and MPM are similar with a slightly different magnitude. The values of normal

displacement for MTPM and MPM are small compared to MTM for /<r<5.6 and the values approach
Zero.
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Microrotation Vector ¢4

—— MTPM
-+ -MM 7
- - -MPM

Distance r

Fig.3. Variations of the microrotation vector ¢y .

In Fig.3, the value of ¢y for MTPM initially decreases for / <r<1.4 and oscillates for /.4<r<$§,
whereas for MPM, its value initially increases for /<r </.3, sharply decreases for /.3<r <2 and then
oscillates for 2<r<§. For the range /<r <8, the behavior of ¢, for MTPM and MTM is similar and

opposite for MPM.

Volume Fraction Field ¢*

—MPM| 4
- - -MPM

Distance r

Fig.4. Variations of volume fraction field (I)* .

Figure 4 shows that the value of (I)* sharply decreases for /<r<17.6 and then oscillates with
increasing in amplitude about the origin for MTPM, whereas for MPM, its value decreases for /<r<1.6,
oscillates for 1.6 <r<5.4 with a large amplitude and further oscillates with a constant amplitude

54<r<8.
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Temperature T
-
»

MTPM
-+ -MM 7

L RN

Distance r

Fig.5. Variations of temperature distribution 7 .

Figure 5 represents that the value of 7' initially decreases and then oscillates with a large amplitude

for the whole range for MTPM. For MTM, its value initially increases for /<r <1.6, sharply decreases for
1.6 <r<2.5 and then oscillates for 2.5 <r <8 with different amplitude. The value is large for MTM for

1.2<r<22,44<r<54 and 7.6 <r<8 and small for 2.2<r<44,54<r<6.4 and 6.8<r<7.6.

g 20
w I
@ |
g ’
w3
= 1l
IS I
= I
2 4
| —— MTPM
5L -+- MM
- - - MPM
8 \ \ L \ \ \
1 2 3 4 5 6 7
Distance r

Fig.6. Variations of normal force stress 7,, .

Figure 6 shows that the value of ., initially decreases for MTPM for /<r<1.6 and then oscillates

about the origin with a large amplitude. The value of ¢, increases in the beginning for 7/ <r < 1.7, decreases
for 1.7<r<2.6 and then oscillates for 2.6 <r <8 with » for MTM and MPM. The behavior of ¢_ for

MTPM is opposite to MTM and MPM for /<r<6.6. The variation in ¢_, is oscillatory for MTPM, MTM

and MPM.
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=
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L L
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Tangential Force Stress t,,

Distance r
Fig.7. Variation of tangential force stress £, .

Figure 7 shows that for MTPM, the value of ¢, increases initially for /<r </.4 and then oscillates
with ». The value of 7, starts with a sharp decrease for MPM as compared to MTM for /<r</.7 and
oscillates about the origin for /.7<r<§8. The value of ¢, for MTPM and MTM is similar near the
application of the source and the value is also the same away from the source for the three cases.

Tangential Couple Stress m

Distance r

Fig.8. Variations of tangential couple stress m_q.

Figure 8 shows that the value of m_y initially decreases for /<r<1.4, sharply increases for
1.4 <r <2 and then oscillates for 2<r <8 for MTPM, MTM and MPM. The variation and behavior of m_g

is uniformly oscillatory for the three cases for the whole range. The values for MTPM, MTM and MPM
approach zero.
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7. Conclusions

The present investigation is concerned with the eigen value approach for a micropolar porous
thermoelastic circular plate due to the application of thermo mechanical source. From the figures, it is
observed that all the physical quantities have non zero value in considered domain and approache the
boundary surface away from the sources. The appreciable effects of the porosity and thermoelasticity are
observed on displacements, microrotation, volume fraction field, temperature distribution and stresses. The
variation pattern of displacements for MTPM and MPM are the same. The variations patterns are also similar
for normal and tangential stresses for MTM and MPM. However, a similar behavior is also observed for
tangential couple stress for MTPM, MTM and MPM. The behavior of temperature distribution gets
oscillatory due to the porosity effect. Due to the thermal effect, the values of the volume fraction field are
initially decreased but afterwards its they increase and oscillate.

Appendix I

A= —(a” +ay; +azz+ay, +ass + 0150y + b33y +bysbsy +byyby, ),

Ay =—a140y; +a33055 + Agy0s5 + Ay 55+ axy0s55 + 330,y + 07033+ ayya33 +
Ta;10yy +ar04y T ;05 —A;5A5) —Ay5ds5y —dp3dsz; + (a33 T ayy tass )b12b21 +
—(a14b42 +a;5bs, +az;by; )521 + (a” +azz tass )542524 + (a” Taz;tay )b25b52 +
—(a41b24 +aysbs +asbys )byy + (azz +ayy +ass +byybyy +by5hs, )b31b13 +

—ay5bsybyy — asybysbss,

Ay =(a;az; +ayass)az; +ay)—aaz, (011 +ayy +ass)+

+a;;ass (azz taztay ) T aszay (a” T aj +ass ) —aysdsy (a” Tay taz; ) +
—ay,a(ay; +azs +ass) —agsas; (ay; +azs +ay ) +

+byybys(asas; +ay asy + azzasy) +bsybys(—agayy +appaz; +ap,a,, +azsa,) +
+bs,b54 (a15a41 —ay a5 +az3a,5 ) = byybys(aszas; +agas; —ayas,) +
—by;by4(azsay; —aysas; +ay ass) +byrbyy(—assas; +appazs +apass + aszass) +
—a35Dy1by5 (g + ass )+ by by (aryagy +arass +ag,ass —aysas,) +

+by by (apsasy —ag azz —apgass)+bybsy(—agays —apsazs —agsag,) +

+b;5b;, (_045‘154 Taz3ayy +aydss + a33a55) —byb3 (023‘144 +aysass ) +

—b3b;3 (054[942[725 —ayybsyby5 +aysbsybyy ) +asb;s (a51b25 +aybyy ) +

+a;5a,,asy +ap4a505; +a14053b31b45,
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Ay =(aggass —aysasy)(arzbyrbs; —assbyrbyy )+

+("15“54 — 455 )(‘133b21b42 —a;3b31b47) + (014045 —a;5Qyy )(033bzzb52 —ay3bsbs;) +
+(aysasy —ayass )(‘132[’21]913 —ayb3,b3) +az3b;5b,y (a45a51 T azz3aydss ) +
+azsbpbyy(—assas; +aypass) +asbshyy(ayass —aysas; )+

+(ay1as54 — 4405, )(a33b;5b55 —azbysbys) + assbysbss(agas; —apasy) +
+azsbsybys(a; 0.y —ap ;) +agsas)(ay3az3; —axaz3 — 0., —az3a,.,)+

+aj4aysas; (azz +asz; ) +a;5a4,dsy (azz + a33) +aysasy(araz, —apaz; —agasz +
—05,a33) + a4y (azsasz T appQ33 —dpdss —Azzds) ) —a;,ay3035(ayy +ass) +

+ass (a;axa55 —aysaz,a, ) +ayayay,(as; +ass)+ azsagass(ag; +ay) +

+(assay; —ay ays)azzbyybs;,

As = (azzas3 —dayzds; )(011“44‘155 —ap Q45054 + al4“45“51) +

+(asasy — 14055 ) (a2703304) — 3303504, )+ (a3; + a33)0;58530,4405).
Appendix II
a; :i[rf {rz (r3 (] —62)+ p6*2)—p026ji’3} +
A;
+errs {r3 (rz —v78(1-87 )= 2%py8) —VS’;)+ R ”
b, = ;_][712 {rz (r3r4 + P5*2%2 ) - Pozajizrs} +
i
+errsrs (EJ2 r+ V28jr4 - 2Vp087§2 ) + 6pV28>;8*2ql~2r]r5 ],
d; = 8’; (Po”l + 6V1f5)(<§ai + bl.)ql. /(—rlrz —5V28jr5),
e = 5(s + n0r0s2 ){(7”11"2 + 6V26jr5 )—€V8j (porj +€Vvrs )} (éal- +b; )‘Ii/{”] (—rﬂfz - €V28jr5 )} ,
A =8" [Ff {ro(&7 +57 =47 )+ pi5) (a7 &7 )| +
tennrs (E,\Z - %2 ) + ij”J’G {Vz (&2 +57 - %‘2 ) - 2P0V(§2 - %’2 )}}
(2, AF 2 2 ) * ok 2
”1—(53 +Q (S+T()S )—%' ), Vz—(f‘: +83s +P151+525—%')a

2
ry = §2+;—2+282—ql-2 , r4=(§2+sz—62qi2), r5=(]+r]s)(s+norosz).
1
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Nomenclature

a]’b, g]aQ)O’m

C* - specific heat at constant strain
j — micro inertia
K] - coefficient of thermal conductivity

my;  — couple stress tensor

T - change in temperature of the medium at any time
— stress tensor

~

.
u — displacement vector
a, — coefficient of linear thermal expansion

— elastic constants due to the presence of voids

and
8; — Kroneckor delta
AW, K,a,B,y — micropolar constants
p —density
T9,T; — thermal relaxation times

¢ — microrotation vector

¢" — change in volume fraction field

v? - Laplacian operator
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