PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Ann Arbor to Sheffield : Around the World in 80 Years. I.

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Childhood and graduate school at Ann Arbor Michigan prepared Bill for an interesting and rewarding career in physics. Along the way came Carol and many joint discoveries with our many colleagues to whom we both owe this good life. This summary of Bill’s early work prior to their marriage and sabbatical in Japan is Part I, prepared for Bill’s 80th Birthday celebration at the University of Sheffield in July 2016.
Twórcy
autor
Bibliografia
  • [1] N. Clisby and B.M. McCoy, Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions, Journal of Statistical Physics 122, 15-57 (2006) = arXiv 0503525.
  • [2] B.J. Alder and T.E.Wainwright, Molecular Motions, Scientific American 201, 113-126 (1959).
  • [3] B.J. Alder, W.G. Hoover, and T.E. Wainwright, Cooperative Motion of Hard Disks Leading to Melting, Physical Review Letters 11, 241-243 (1963).
  • [4] M. Engel, J.A. Anderson, S.C. Glotzer, M. Isobe, E.P. Bernard, and W. Krauth, Hard-Disk Equation of State: First-Order Liquid-Hexatic Transition in Two Dimensions with Three Simulation Methods, Physical Review E 87, 042134 (2013) =arXiv 1211.1645.
  • [5] R. Zangi and S.A. Rice, Cooperative Dynamics in Two Dimensions, Physical Review Letters 92, 0355002 (2004).
  • [6] B.J. Alder and T.E. Wainwright, Phase Transition in Elastic Disks, Physical Review 127, 359-361 (1962) .
  • [7] W.G. Hoover and F.H. Ree, Melting and Communal Entropy for Hard Spheres, The Journal of Chemical Physics 49, 3609-3617 (1968).
  • [8] B.J. Alder, W.G. Hoover, and D.A. Young, Studies in Molecular Dynamics. V. High-Density Equation of State and Entropy for Hard Disks and Spheres, The Journal of Chemical Physics 49, 3688-3696 (1968).
  • [9] J.A. Barker and D. Henderson: What is ‘Liquid’? Understanding the States of Matter, Reviews of Modern Physics 48, 587-671 (1976).
  • [10] W.G. Hoover and B.J. Alder, Studies in Molecular Dynamics. IV. The Pressure, Collision Rate, and Their Number Dependence for Hard Disks, The Journal of Chemical Physics 46, 686-691 (1967).
  • [11] W.T. Ashurst, Dense Fluid Shear Viscosity and Thermal Conductivity via Nonequilibrium Molecular Dynamics (Ph D dissertation, University of California at Davis-Livermore, 1974)= Sandia Livermore Laboratory Report, SLL-74-0013.
  • [12] W.G. Hoover, N.E. Hoover, and K. Hanson, Exact Hard-Disk Free Volumes, The Journal of Chemical Physics 70, 1837-1844 (1979).
  • [13] R.E. Duff, W.H. Gust, E.B. Royce, M. Ross, A.C. Mitchell, R.N. Keeler, and W.G. Hoover, Shockwave Studies in Condensed Media, in Behavior of Dense Media Under High Dynamic Pressures (Gordon and Breach, New York, 1968).
  • [14] V.Y. Klimenko and A.N. Dremin, Structure of Shockwave Front in a Liquid in Detonation, Chernogolovka, edited by O.N. Breusov et alii (Akademiya Nauk, Moscow, SSSR, 1978), pages 79-83.
  • [15] W.G. Hoover, Structure of a Shockwave Front in a Liquid, Physical Review Letters 42, 1531-1534 (1979).
  • [16] W.G. Hoover, D.J. Evans, R.B. Hickman, A.J. C. Ladd, W.T. Ashurst and B. Moran, Lennard-Jones Triple-Point Bulk and Shear Viscosities. Green-Kubo Theory, Hamiltonian Mechanics, and Nonequilibrium Molecular Dynamics, Physical Review A 22, 1690-1697 (1980).
  • [17] B.L. Holian, W.G. Hoover, B. Moran, and G.K. Straub, “Shockwave Structure via Nonequilibrium Molecular Dynamics and Navier-Stokes Continuum Mechanics”, Physical Review A 22, 2798-2808 (1980).
  • [18] S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Molecular Physics 52, 255-268 (1984).
  • [19] S. Nosé, “A Unified Formulation of the Constant Temperature Molecular Dynamics Methods”, The Journal of Chemical Physics 81, 511-519 (1984).
  • [20] C.P. Dettmann and G.P. Morriss, Hamiltonian Reformulation and Pairing of Lyapunov Exponents for Nosé-Hoover Dynamics, Physical Review E 55, 3693-3696 (1997).
  • [21] W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Physical Review A 31, 1695-1697 (1985).
  • [22] P.K. Patra, J.C. Sprott, W.G. Hoover and C.G. Hoover, Deterministic Time-Reversible Thermostats: Chaos, Ergodicity, and the Zeroth Law of Thermodynamics, Molecular Physics 113,2863-2872 (2015).
  • [23] W.G. Hoover and B.L. Holian, Kinetic Moments Method forthe Canonical Ensemble Distribution, Physics Letters A 211, 253-257 (1996).
  • [24] W.G. Hoover, C.G. Hoover, and J.C. Sprott, Nonequilibrium systems: Hard Disks and Harmonic Oscillators Near and Far From Equilibrium, arXiv 1507.08302.
  • [25] L. Wang and X-S. Yang, The Invariant Tori of Knot Type and the Interlinked Invariant Tori in the Nosé-Hoover System, arXiv 1501.03375 (2015).
  • [26] S. Przybyl and P. Pieranski, Tightening of the Elastic Overhand Knot, Physical Review E 79, 031801 (2009).
  • [27] H.A. Posch, W.G. Hoover, and F.J. Vesely, Canonical Dynamics of the Nosé Oscillator: Stability, Order, and Chaos, Physical Review A 33, 4253-4265 (1986).
  • [28] W.G. Hoover and C.G. Hoover Simulation and Control of Chaotic Nonequilibrium Systems (World Scientific, Singapore, 2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71471da9-dd74-4c3e-b013-ad481c5bb906
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.